Skip to main content
Log in

Grafting polyisoprene onto surfaces of kaolin by spray drying technology and modification of styrene–butadiene rubber

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this contribution, we reported the investigation of styrene–butadiene rubber (SBR) reinforced by kaolin-graft-polyisoprene (Mkaol). First, poly(isoprene-maleic anhydride) random copolymers (PIPMA) which was used as macromolecular surface modifiers were synthesized via reversible addition-fragmentation chain transfer polymerization (RAFT). Second, the PIPMA was sprayed onto the surface of kaolin to obtain MKaol. FTIR spectroscopy indicated that the surface of MKaol was covered with a layer of PIPMA. MKaol and kaolin were simultaneously incorporated into SBR. The storage modulus (G′) of SBR/kaolin compounds at low strains was much lower than the G′ of SBR/MKaol. The curing properties showed that the vulcanization rate of the SBR/MKaol compounds was much lower than that of the SBR/kaolin. The cross-link density of SBR/kaolin was slightly higher than those of SBR/MKaol. The SEM images revealed that kaolin microdomains in the SBR/MKaol vulcanizates were much better distributed and dispersed than in the SBR/kaolin composites. Compared to filler dispersion and filler–rubber interaction of the SBR/kaolin composites, the mechanical properties (tensile strength, elongation at break, and tear strength) of the SBR/MKaol composites were significantly improved.

Graphical abstract

Poly(isoprene-maleic anhydride) random copolymers (PIPMA) which was used as macromolecular surface modifiers were synthesized via reversible addition-fragmentation chain transfer polymerization (RAFT). PIPMA was sprayed onto the surface of kaolin to obtain MKaol. The storage modulus (G′) of SBR/kaolin compounds at low strains was much lower than the G′ of SBR/MKaol compounds. The curing properties showed that the vulcanization rate of the SBR/MKaol compounds was much lower than that of the SBR/kaolin compounds. Kaolin microdomains in the SBR/MKaol vulcanizates were much better to disperse and distribute than in the SBR/kaolin composites. Compared to the SBR/kaolin composites, the mechanical properties of SBR/MKaol composites were greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wolff S, Wang MJ, Tan EH (1993) Filler-elastomer interactions. Part VII. Study on bound rubber. Rubber Chem Technol 66:163–177. https://doi.org/10.5254/1.3538304

    Article  CAS  Google Scholar 

  2. Dannenberg EM (1975) The effects of surface chemical interactions on the properties of filler-reinforced rubbers. Rubber Chem Technol 48:410–444. https://doi.org/10.5254/1.3547460

    Article  CAS  Google Scholar 

  3. Frost RL, Horváth E, Makó É, Kristóf J, Cseh T (2003) The effect of mechanochemical activation upon the intercalation of a high-defect kaolinite with formamide. J Colloid Interface Sci 256:386–395. https://doi.org/10.1016/S0021-9797(03)00452-1

    Article  CAS  Google Scholar 

  4. Cheng H, Liu Q, Yang J, Zhang J, Frost RL (2010) Thermal analysis and infrared emission spectroscopic study of halloysite–potassium acetate intercalation compound. Thermochim acta 16:124–128. https://doi.org/10.1016/j.tca.2010.08.003

    Article  CAS  Google Scholar 

  5. Zhang Z, Lu X, Su P (2010) Dispersion of kaolin powders in silica sols. Appl Clay Sci 49:51–54. https://doi.org/10.1016/j.clay.2010.04.001

    Article  CAS  Google Scholar 

  6. Wu W, Tian L (2013) Formulation and morphology of kaolin-filled rubber composites. Appl Clay Sci 80:93–97. https://doi.org/10.1016/j.clay.2013.06.025

    Article  CAS  Google Scholar 

  7. Jana SC, Jain S (2001) Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids. Polymer 42:6897–6905. https://doi.org/10.1016/S0032-3861(01)00175-6

    Article  CAS  Google Scholar 

  8. Lin Y, Zhang A, Sun J, Wang L (2013) Properties of natural rubber vulcanizates/nanosilica composites prepared based on the method of in-situ generation and coagulation. J Macromol Sci B 52:1494–1507. https://doi.org/10.1080/00222348.2013.763562

    Article  Google Scholar 

  9. Zhang Y, Zhang A, Kang L, Zhang Y (2020) Mechanical properties and thermal stability of kaolinite/emulsion polymerization styrene butadiene rubber composite prepared by latex blending method. Polym Sci Ser 62:407–421. https://doi.org/10.1134/S0965545X20040112

    Article  Google Scholar 

  10. Turner MR, Duguet E, Labrugere C (1997) Characterization of silane-modified ZrO2 powder surfaces. Surf Interface Anal 25:917–923. https://doi.org/10.1002/(SICI)10969918(199711)25:12%3c917::AIDSIA314%3e3.0.CO;2-3

    Article  CAS  Google Scholar 

  11. Ramier J, Gauthier C, Chazeau L, Stelandre L, Guy L (2007) Payne effect in silica-filled styrene–butadiene rubber: influence of surface treatment. J Polym Sci, Pol Phys 45:286–298. https://doi.org/10.1002/polb.21033

    Article  CAS  Google Scholar 

  12. Sheikh SH, Yin X, Ansarifar A, Yendall K (2017) The potential of kaolin as a reinforcing filler for rubber composites with new sulfur cure systems. J Reinf Plast Comp 36:1132–1145. https://doi.org/10.1177/0731684417712070

    Article  CAS  Google Scholar 

  13. Hillmyer MA, Lipic PM, Hajduk DA, Almdal K, Bates FS (1997) Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites. J Am Chem Soc 119:2749–2750. https://doi.org/10.1021/ja963622m

    Article  CAS  Google Scholar 

  14. Hu D, Xu Z, Zeng K, Zheng S (2010) From self-organized novolac resins to ordered nanoporous carbons. Macromolecules 43:2960–2969. https://doi.org/10.1021/ma902770r

    Article  CAS  Google Scholar 

  15. Xu Z, Zheng S (2007) Morphology and thermomechanical properties of nanostructured thermosetting blends of epoxy resin and poly (ɛ-caprolactone)-block-polydimethylsiloxane-block-poly (ɛ-caprolactone) triblock copolymer. Polymer 48:6134–6144. https://doi.org/10.1016/j.polymer.2007.07.072

    Article  CAS  Google Scholar 

  16. Zhang C, Li L, Zheng S (2013) Formation and confined crystallization of polyethylene nanophases in epoxy thermosets. Macromolecules 46:2740–2753. https://doi.org/10.1021/ma4000682

    Article  CAS  Google Scholar 

  17. Cong H, Li L, Zheng S (2014) Formation of nanostructures in thermosets containing block copolymers: from self-assembly to reaction-induced microphase separation mechanism. Polymer 55:1190–1201. https://doi.org/10.1016/j.polymer.2014.01.049

    Article  CAS  Google Scholar 

  18. Xiang Y, Xu S, Zheng S (2018) Epoxy toughening via formation of polyisoprene nanophases with amphiphilic diblock copolymer. Eur Polym J 98:321–329. https://doi.org/10.1016/j.eurpolymj.2017.11.032

    Article  CAS  Google Scholar 

  19. Rong M, Zhang M, Zheng Y, Zeng H, Walter R, Friedrich K (2001) Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 42:167–183. https://doi.org/10.1016/S0032-3861(00)00325-6

    Article  CAS  Google Scholar 

  20. Bikiaris DN, Papageorgiou GZ, Pavlidou E, Vouroutzis N, Palatzoglou P, Karayannidis GP (2006) Preparation by melt mixing and characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface-treated nanoparticles. J Appl Polym Sci 100:2684–2696. https://doi.org/10.1002/app.22849

    Article  CAS  Google Scholar 

  21. Yu Y, Rong M, Zhang M (2010) Grafting of hyperbranched aromatic polyamide onto silica nanoparticles. Polymer 51:492–499. https://doi.org/10.1016/j.polymer.2009.12.013

    Article  CAS  Google Scholar 

  22. Liu C, Pan C (2007) Grafting polystyrene onto silica nanoparticles via RAFT polymerization. Polymer 48:3679–3685. https://doi.org/10.1016/j.polymer.2007.04.055

    Article  CAS  Google Scholar 

  23. Morinaga T, Ohkura M, Ohno K, Tsujii Y, Fukuda T (2007) Monodisperse silica particles grafted with concentrated oxetane-carrying polymer brushes: their synthesis by surface-initiated atom transfer radical polymerization and use for fabrication of hollow spheres. Macromolecules 40:1159–1164. https://doi.org/10.1021/ma062230p

    Article  CAS  Google Scholar 

  24. Zhao B, Zhu L (2006) Nanoscale phase separation in mixed poly (tert-butyl acrylate)/polystyrene brushes on silica nanoparticles under equilibrium melt conditions. J Am Chem Soc 128:4574–4575. https://doi.org/10.1021/ja058560r

    Article  PubMed  CAS  Google Scholar 

  25. Wu T, Zhang Y, Wang X, Liu S (2008) Fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive poly (N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization. Chem Mater 20:101–109. https://doi.org/10.1021/cm702073f

    Article  CAS  Google Scholar 

  26. Zong G, Chen H, Qu R, Wang C, Ji N (2011) Synthesis of polyacrylonitrile-grafted cross-linked N-chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP, and use of the resin in mercury removal after modification. J Hazard Mater 186:614–621. https://doi.org/10.1016/j.jhazmat.2010.11.043

    Article  PubMed  CAS  Google Scholar 

  27. Perrier S, Takolpuckdee P, Mars CA (2005) Reversible addition-fragmentation chain transfer polymerization mediated by a solid supported chain transfer agent. Macromolecules 38:6770–6774. https://doi.org/10.1021/ma0506886

    Article  CAS  Google Scholar 

  28. Zhao Y, Perrier S (2007) Reversible addition-fragmentation chain transfer graft polymerization mediated by fumed silica supported chain transfer agents. Macromolecules 40:9116–9124. https://doi.org/10.1021/ma0716783

    Article  CAS  Google Scholar 

  29. Rungta A, Natarajan B, Neely T, Dukes D, Schadler LS, Benicewicz BC (2012) Grafting bimodal polymer brushes on nanoparticles using controlled radical polymerization. Macromolecules 45:9303–9311. https://doi.org/10.1021/ma3018876

    Article  CAS  Google Scholar 

  30. Chinthamanipeta PS, Kobukata S, Nakata H, Shipp DA (2008) Synthesis of poly (methyl methacrylate)-silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization. Polymer 49:5636–5642. https://doi.org/10.1016/j.polymer.2008.10.018

    Article  CAS  Google Scholar 

  31. Tumnantong D, Rempel GL, Prasassarakich P (2018) Preparation of poly (methyl methacrylate)-silica nanoparticles via differential microemulsion polymerization and physical properties of NR/PMMA-SiO2 hybrid membranes. Polym Eng Sci 58:759–766. https://doi.org/10.1002/pen.24611

    Article  CAS  Google Scholar 

  32. Khani MM, Abbas ZM, Benicewicz BC (2017) Well-defined polyisoprene-grafted silica nanoparticles via the RAFT process. J Polym Sci, Pol Chem 55:1493–1501. https://doi.org/10.1002/pola.28514

    Article  CAS  Google Scholar 

  33. Kongsinlark A, Rempel GL, Prasassarakich P (2012) Synthesis of monodispersed polyisoprene–silica nanoparticles via differential microemulsion polymerization and mechanical properties of polyisoprene nanocomposite. Chem Eng J 193:215–226. https://doi.org/10.1016/j.cej.2012.04.008

    Article  CAS  Google Scholar 

  34. Tumnantong D, Rempel GL, Prasassarakich P (2017) Polyisoprene-silica nanoparticles synthesized via RAFT emulsifier-free emulsion polymerization using water-soluble initiators. Polymers 9:637. https://doi.org/10.3390/polym9110637

    Article  PubMed Central  CAS  Google Scholar 

  35. Xiang Y, Shen X, Gao J, Asiri AM, Marwani HM (2019) Grafting polyisoprene onto surfaces of nanosilica via RAFT polymerization and modification of natural rubber. Polym Eng Sci 59:1167–1174. https://doi.org/10.1002/pen.25096

    Article  CAS  Google Scholar 

  36. Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756. https://doi.org/10.1021/ma020362m

    Article  CAS  Google Scholar 

  37. Abd-El-Messieh SL, Abd-El-Nour KN (2003) Effect of curing time and sulfur content on the dielectric relaxation of styrene–butadiene rubber. J Appl Polym Sci 88:1613–1621. https://doi.org/10.1002/app.11686

    Article  CAS  Google Scholar 

  38. Boopasiri S, Sae-Oui P, Lundee S, Takaewnoi S, Siriwong C (2021) Reinforcing efficiency of pyrolyzed spent coffee ground in styrene-butadiene rubber. Macromol Res 29:597–604. https://doi.org/10.1007/s13233-021-9072-x

    Article  CAS  Google Scholar 

  39. Huang M, Li L, Zheng S (2016) Mesoporous silica with block copolymer templates: modulation of porosity via block copolymer reaction with silica. Micropor Mesopor Mat 225:9–25. https://doi.org/10.1016/j.micromeso.2015.12.008

    Article  CAS  Google Scholar 

  40. Liew YM, Kamarudin H, Al Bakri AM, Luqman M, Nizar IK, Ruzaidi CM, Heah CY (2012) Processing and characterization of calcined kaolin cement powder. Constr Build Mater 30:794–802. https://doi.org/10.1016/j.conbuildmat.2011.12.079

    Article  Google Scholar 

  41. Sepehri A, Razzaghi-Kashani M, Ghoreishy MHR (2012) Vulcanization kinetics of butyl rubber–clay nanocomposites and its dependence on clay microstructure. J Appl Polym Sci 125:E204–E213. https://doi.org/10.1002/app.34231

    Article  CAS  Google Scholar 

  42. Sarkawi SS, Dierkes WK, Noordermeer JW (2014) Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM Network Visualization. Eur Polym J 54:118–127. https://doi.org/10.1016/j.eurpolymj.2014.02.015

    Article  CAS  Google Scholar 

  43. Ahmed NM, El-Sabbagh SH (2014) The influence of kaolin and calcined kaolin on SBR composite properties. Polym Composite 35:570–580. https://doi.org/10.1002/pc.22697

    Article  CAS  Google Scholar 

  44. Pangamol P, Malee W, Yujaroen R, Sae-Oui P, Siriwong C (2018) Utilization of bagasse ash as a filler in natural rubber and styrene–butadiene rubber composites. Arab J Sci Eng 43(1):221–227. https://doi.org/10.1007/s13369-017-2859-6

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Anhui Province (1908085QB63), the Key Research and Development Project of Anhui Province (2022a05020009), the Foundation of Anhui Laboratory of Clean Catalytic Engineering (LCCE-02), and the Foundation of Anhui Polytechnic University of Xuancheng Institute of Industrial Technology (B2018-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yixin Xiang or Houluo Cong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Zhao, H., Xiang, Y. et al. Grafting polyisoprene onto surfaces of kaolin by spray drying technology and modification of styrene–butadiene rubber. Colloid Polym Sci 300, 927–938 (2022). https://doi.org/10.1007/s00396-022-04966-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04966-2

Keywords

Navigation