Skip to main content
Log in

Diffusiophoresis of a mercury drop

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The general expression is obtained for the diffusiophoretic mobility of a mercury drop in an electrolyte concentration gradient. On the basis of the obtained general mobility expression, an approximate analytic mobility expression which is correct to the second order of the drop zeta potential is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Derjaguin BV, Dukhin SS, Korotkova AA (1961) Diffusiophoresis in electrolyte solutions and its role in the mechanism of film formation of cationic latex by ionic deposition. Kolloidyni Zh 23:53–58

    Google Scholar 

  2. Prieve DC (1982) Migration of a colloidal particle in a gradient of electrolyte concentration. Adv Colloid Interface Sci 16:321–335

    Article  CAS  Google Scholar 

  3. Prieve DC, Anderson JL, Ebel JP, Lowell ME (1984) Motion of a particle generated by chemical gradients. Part 2. Electrolytes J Fluid Mech 148:247–269

    Article  CAS  Google Scholar 

  4. Prieve DC, Roman R (1987) Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. J Chem Soc Faraday Trans II 83:1287–1306

    Article  CAS  Google Scholar 

  5. Anderson JL (1989) Colloid transport by interfacial forces. Ann Rev Fluid Mech 21:61–99

    Article  Google Scholar 

  6. Pawar Y, Solomentsev YE, Anderson JL (1993) Polarization effects on diffusiophoresis in electrolyte gradients. J Colloid Interface Sci 155:488–498

    Article  CAS  Google Scholar 

  7. Keh HJ, Chen SB (1993) Diffusiophoresis and electrophoresis of colloidal cylinders. Langmuir 9:1142–1149

    Article  CAS  Google Scholar 

  8. Keh HJ, Wei YK (2000) Diffusiophoretic mobility of spherical particles at low potential and arbitrary double-layer thickness. Langmuir 16:5289–5294

    Article  CAS  Google Scholar 

  9. Hoshyargar V, Ashrafizadeh SN, Sadeghi A (2015) Drastic alteration of diffusioosmosis due to steric effects. Phys Chem Chem Phys 17:29193

    Article  CAS  Google Scholar 

  10. Keh HJ (2016) Diffusiophoresis of charged particles and diffusioosmosis of electrolyte solutions. Curr Opin Colloid Interface Sci 24:13–22

    Article  CAS  Google Scholar 

  11. Gupta A, Rallabandi B, Howard A, Stone HA (2019) Diffusiophoretic and diffusioosmotic velocities for mixtures of valence-asymmetric electrolytes. Phys Rev Fluids 4:043702

  12. Gupta A, Shim S, Stone HA (2020) Diffusiophoresis: from dilute to concentrated electrolytes. Soft Matter 16:6975–6984

    Article  CAS  Google Scholar 

  13. Wilson JL, Shim S, Yu YE, Gupta A, Stone HA (2020) Diffusiophoresis in multivalent electrolytes. Langmuir 36:7014–7020

    Article  CAS  Google Scholar 

  14. Ohshima H (2021) Approximate analytic expressions for the diffusiophoretic velocity of a spherical colloidal particle. Electrophoresis. https://doi.org/10.1002/elps.202100178

    Article  PubMed  Google Scholar 

  15. Ohshima H (2021) Diffusiophoretic velocity of a large spherical colloidal particle in a solution of general electrolytes. Colloid Polym Sci 299:1877–1884

    Article  CAS  Google Scholar 

  16. Ohshima H (2022) Ion-size effect on the diffusiophoretic mobility of a large colloidal particle. Colloid Polym Sci. https://doi.org/10.1007/s00396-022-04954-6

  17. Lou J, Lee E (2008) Diffusiophoresis of concentrated suspensions of liquid drops. J Phys Chem C 112:12455–12462

    Article  CAS  Google Scholar 

  18. Yang F, Shin S, Stone HA (2018) Diffusiophoresis of a charged drop. J Fluid Mech 852:37–59

    Article  CAS  Google Scholar 

  19. Wu Y, Jian E, Fan L, Tseng J, Wan R, Lee E (2021) Diffusiophoresis of a highly charged dielectric fluid droplet. Phys Fluids 33:122005

  20. Huang PY (2012) Keh HJ (2012) Diffusiophoresis of a spherical soft particle in electrolyte gradients. J Phys Chem B 116:7575–7589

    Article  CAS  Google Scholar 

  21. Tseng S, Chung Y-C, Hsu J-P (2015) Diffusiophoresis of a soft, pH-regulated particle in a solution containing multiple ionic species. J Colloid Interface Sci 438:196–293

    Article  CAS  Google Scholar 

  22. Majee PS, Bhattacharyya S (2021) Impact of ion partitioning and double layer polarization on diffusiophoresis of a pH-regulated nanogel. Meccanica 56:1989–2004

    Article  Google Scholar 

  23. Wu Y, Lee YF, Chang WC, Fan L, Jian E, Tseng J, Lee E (2021) Diffusiophoresis of a highly charged soft particle in electrolyte solutions induced by diffusion potential. Phys Fluids 33:012014

  24. Lee YF, Chang WC, Wu Y, Fan L, Lee E (2021) Diffusiophoresis of a highly charged soft particle in electrolyte solutions induced by diffusion potential. Langmuir 37:1480–1492

    Article  CAS  Google Scholar 

  25. Ohshima H (2022) Diffusiophoretic velocity of a spherical soft particle. Colloid Polym Sci 300:153–157

    Article  CAS  Google Scholar 

  26. Ohshima H, Healy TW, White LR (1984) Electrokinetic phenomena in a dilute suspension of charged mercury drops. J Chem Soc Faraday Trans II 80:1643–1667

    Article  CAS  Google Scholar 

  27. Ohshima H (1997) A simple expression for the electrophoretic mobility of charged mercury drops. J Colloid Interface Sci 189:376–378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohshima.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohshima, H. Diffusiophoresis of a mercury drop. Colloid Polym Sci 300, 583–586 (2022). https://doi.org/10.1007/s00396-022-04964-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04964-4

Keywords

Navigation