Skip to main content

Advertisement

Log in

Facile fabrication of high-performance PA66/MWNT nanocomposite fibers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are promising polymer-strengthening materials; however, it is difficult to achieve the even distribution of CNTs in polymer matrixes and strong interfacial interactions between CNTs and polymeric chains. In the present work, multi-walled carbon nanotubes (MWNTs), carboxylic multi-walled carbon nanotubes (MWNTs-COOH), amino multi-walled carbon nanotubes (MWNTs-NH2), and hydroxylated multi-walled carbon nanotubes (MWNTs-OH) were added as reinforcements to the polyamide 66 (PA66) matrix. CNTs were dispersed in the PA66 matrix by a twin-rotor high-speed mixing extruder at 800 rpm. Chips were melted spun and two-step stretched to fabricate nanocomposite fibers. The microstructure and properties of nanocomposite fibers were investigated. It was found that MWNTs-COOH were well dispersed in the PA66 matrix. PA66/MWNTs-COOH nanocomposite fibers exhibited the best mechanical properties. The tensile strength and Young’s modulus of PA66/0.3 wt% MWNTs-COOH nanocomposite fibers were ~ 907 MPa and ~ 5.92 GPa, respectively, which were 22.2% and 4.8% higher than those of pure PA66 fibers, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Masood MT, Papadopoulou EL, Heredia-Guerrero JA, Bayer IS, Athanassiou A, Ceseracciu L (2017) Graphene and polytetrafluoroethylene synergistically improve the tribological properties and adhesion of nylon 66 coatings. Carbon 123:26–33. https://doi.org/10.1016/j.carbon.2017.07.026

    Article  CAS  Google Scholar 

  2. Kim J, Oh J, Lee KY, Jung I, Park M (2017) Dispersion of graphene-based nanocarbon fillers in polyamide 66 by dry processing and its effect on mechanical properties. Compos Part B-Eng 114:445–456. https://doi.org/10.1016/j.compositesb.2017.01.054

    Article  CAS  Google Scholar 

  3. Bellenger V, Tcharkhtchi A, Castaing P (2006) Thermal and mechanical fatigue of a PA66/glass fibers composite material. Int J Fatigue 28:1348–1352. https://doi.org/10.1016/j.ijfatigue.2006.02.031

    Article  CAS  Google Scholar 

  4. Chang QX, Zhao HJ, He RQ (2017) The addition of clay on the mechanical properties of surface-treated CF-filled PA66 composites. Surf Interface Anal 49:837–842. https://doi.org/10.1002/sia.6230

    Article  CAS  Google Scholar 

  5. Xu X, Li B, Lu H, Zhang Z, Wang H (2007) The interface structure of nano-SiO2/PA66 composites and its influence on material’s mechanical and thermal properties. Appl Surf Sci 254:1456–1462. https://doi.org/10.1016/j.apsusc.2007.07.014

    Article  CAS  Google Scholar 

  6. Ajayan PM, Tour JM (2007) Materials science—nanotube composites. Nature 447:1066–1068. https://doi.org/10.1038/4471066a

    Article  CAS  PubMed  Google Scholar 

  7. Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362:547–553. https://doi.org/10.1126/science.aat7439

    Article  CAS  PubMed  Google Scholar 

  8. Coleman JN, Khan U, Blau WJ, Gun’Ko Y (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652. https://doi.org/10.1016/j.carbon.2006.02.038

    Article  CAS  Google Scholar 

  9. Tran TQ, Fan Z, Mikhalchan A, Liu P, Duong HM (2016) Post-treatments for multifunctional property enhancement of carbon nanotube fibers from the floating catalyst method. ACS Appl Mater Interfaces 8:7948–7956. https://doi.org/10.1021/acsami.5b09912

    Article  CAS  PubMed  Google Scholar 

  10. Tian C, Yu-Zhou W, Hai-Hui L, Xing-Xiang Z (2017) Melt-spinning of carboxylated MWNTs-reinforced polyamide 6 fibers with solid mixing nanocomposites. Polym Compos 39:4298–4309. https://doi.org/10.1002/pc.24510

    Article  CAS  Google Scholar 

  11. Qian H, Kalinka G, Chan KLA, Kazarian SG, Greenhalgh ES, Bismarck A, Shaffer MSP (2011) Mapping local microstructure and mechanical performance around carbon nanotube grafted silica fibres: methodologies for hierarchical composites. Nanoscale 3:4759–4767. https://doi.org/10.1039/c1nr10497g

    Article  CAS  PubMed  Google Scholar 

  12. Mahmood N, Islam M, Hameed A, Saeed S, Khan AN (2014) Polyamide-6-based composites reinforced with pristine or functionalized multi-walled carbon nanotubes produced using melt extrusion technique. J Compos Mater 48:1197–1207. https://doi.org/10.1177/0021998313484779

    Article  CAS  Google Scholar 

  13. Zhang J, Gao X, Zhang X, Liu H, Zhang X (2019) Polyamide 66 and amino-functionalized multi-walled carbon nanotube composites and their melt-spun fibers. J Mater Sci 54:1–13. https://doi.org/10.1007/s10853-019-03619-0

    Article  CAS  Google Scholar 

  14. Zhang J, Yu WG, Zhang XY, Gao XF, Liu HH, Zhang XX (2020) Enhancement of physical and mechanical properties of polyamide 66 fibers using polysiloxane-functionalized multi-walled carbon nanotubes. J Appl Polym Sci 138:50170. https://doi.org/10.1002/app.50170

    Article  CAS  Google Scholar 

  15. Mai F, Pan DD, Gao X, Yao MJ, Deng H, Wang K, Chen F, Fu Q (2011) Extension-induced mechanical reinforcement in melt-spun fibers of polyamide 66/multiwalled carbon nanotube composites. Polym Int 60:1646–1654. https://doi.org/10.1002/pi.3144

    Article  CAS  Google Scholar 

  16. Chen T, Liu H, Wang X, Zhang H, Zhang X (2018) Properties and fabrication of PA66/surface-modified multi-walled nanotubes composite fibers by ball milling and melt-spinning. Polymers 10:547–560. https://doi.org/10.3390/polym10050547

    Article  CAS  PubMed Central  Google Scholar 

  17. Socher R, Krause B, Boldt R, Hermasch S, Wursche R, Pötschke P (2011) Melt mixed nano composites of PA12 with MWNTs: influence of MWNT and matrix properties on macrodispersion and electrical properties. Compos Sci Technol 71:306–314. https://doi.org/10.1016/j.compscitech.2010.11.015

    Article  CAS  Google Scholar 

  18. Meng H, Sui GX, Fang PF, Yang R (2008) Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer 49:610–620. https://doi.org/10.1016/j.polymer.2007.12.001

    Article  CAS  Google Scholar 

  19. Jeon HS, Rameshwaram JK, Kim G, Weinkauf DH (2003) Characterization of polyisoprene–clay nanocomposites prepared by solution blending. Polymer 44:5749–5758. https://doi.org/10.1016/S0032-3861(03)00466-X

    Article  CAS  Google Scholar 

  20. Zhou LF, Liu HH, Zhang XX (2015) Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers. J Mater Sci 50:2797–2805. https://doi.org/10.1007/s10853-015-8837-z

    Article  CAS  Google Scholar 

  21. Zhao C, Hu G, Justice R, Schaefer DW, Zhang S, Yang M, Han CC (2005) Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer 46:5125–5132. https://doi.org/10.1016/j.polymer.2005.04.065

    Article  CAS  Google Scholar 

  22. Mehdi SK, Vahid HA, Farid BS, Saeid RR, Hossein RM, Mahmoud H (2012) Effect of carbon nanotubes on the kinetics of in situ polymerization of methyl methacrylate. Nano Brief Reports and Reviews 7:1250003. https://doi.org/10.1142/S1793292012500038

    Article  Google Scholar 

  23. Xie L, Li P, Ma Y, Sha J (2012) A representation method for describing a deagglomerating process in continuous mixer. Polym Compos 33:476–483. https://doi.org/10.1002/pc.22135

    Article  CAS  Google Scholar 

  24. Liu RJ, Zhao FH, Zhang HH, Yu XY, Ding HL (2015) Preparation of polyimide/MWCNT nanocomposites via solid state shearing pulverization (S3P) processing. J Nanosci Nanotechnol 15:3780–3785. https://doi.org/10.1166/jnn.2015.9490

    Article  CAS  PubMed  Google Scholar 

  25. Javed H, Islam M, Mahmood N, Achour A, Hameed A, Khatri N (2016) Catalytic growth of multi-walled carbon nanotubes using NiFe2O4 nanoparticles and incorporation into epoxy matrix for enhanced mechanical properties. J Polym Eng 36:53–64. https://doi.org/10.1515/polyeng-2015-0137

    Article  CAS  Google Scholar 

  26. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145. https://doi.org/10.1021/cr900070d

    Article  CAS  Google Scholar 

  27. Scaffaro R, Maio A, Tito AC (2012) High performance PA6/CNTs nanohybrid fibers prepared in the melt. Compos Sci Technol 72:1918–1923. https://doi.org/10.1016/j.compscitech.2012.08.010

    Article  CAS  Google Scholar 

  28. John HL, Mauricio T, Elisabeth M, Katherine EH, Vincent M (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49:2581–2602. https://doi.org/10.1016/j.carbon.2011.03.028

    Article  CAS  Google Scholar 

  29. Hwang YG, Lee SC, Jeong YG (2014) Structure, electrical and mechanical properties of polyamide 66/acid-treated MWCNT composite films prepared by solution mixing in the presence of nonionic surfactant. Fibers Polym 15:1010–1016. https://doi.org/10.1007/s12221-014-1010-5

    Article  CAS  Google Scholar 

  30. Zabihi O, Ahmadi M, Abdollahi T, Nikafshar S, Naebe M (2017) Collision-induced activation: towards industrially scalable approach to graphite nanoplatelets functionalization for superior polymer nanocomposites. Sci Rep 7:3560. https://doi.org/10.1038/s41598-017-03890-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang Y, Zhao M, Xia Z, Duan H, Zhao G, Liu Y (2018) Facile preparation of polyamide 6/exfoliated graphite nanoplate composites via ultrasound-assisted processing. Polym Eng Sci 58:1739–1745. https://doi.org/10.1002/pen.24773

    Article  CAS  Google Scholar 

  32. Zhou JL, Wang QQ, Jia C, Innocent MT, Pan WN, Xiang HX, Zhu MF (2021) Molecular weight discrete distribution-induced orientation of high-strength copolyamide fibers: effects of component proportion and molecular weight. Macromol 54:7529–7539. https://doi.org/10.1021/acs.macromol.1c00915

    Article  CAS  Google Scholar 

  33. Pan W, Zhou J, Xiang H, Innocent MT, Zhai G, Zhu M (2020) Melt-spun industrial super-strong polycaprolactam fiber: effects of tie-molecules and crystal transformation. COMPOS PART B-ENG 185:107772. https://doi.org/10.1016/j.compositesb.2020.107772

    Article  CAS  Google Scholar 

  34. Armas J, Reynolds K, Marsh Z, Fernández-Blázquez J, Ayala D, Cronin A, Aguila J, Fideldy R, Abdou J, Bilger D, Vilatela J, Stefik M, Scott G, Zhang S (2019) Supramolecular assembly of oriented spherulitic crystals of conjugated polymers surrounding carbon nanotube fibers. Macromol Rapid Commun 40:1900098. https://doi.org/10.1002/marc.201900098

    Article  CAS  Google Scholar 

  35. Scaffaro R, Maio A (2017) A green method to prepare nanosilica modified graphene oxide to inhibit nanoparticles re-aggregation during melt processing. Chem Eng J 308:1034–1047. https://doi.org/10.1016/j.cej.2016.09.131

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Tianjin Science and Technology Military and Civilian Integration key special project (18ZXJMTG00110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Han or Xing-Xiang Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XF., Yu, WG., Han, N. et al. Facile fabrication of high-performance PA66/MWNT nanocomposite fibers. Colloid Polym Sci 300, 509–519 (2022). https://doi.org/10.1007/s00396-022-04961-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04961-7

Keywords

Navigation