Skip to main content
Log in

Impact of the various buffer solutions on the temperature-responsive properties of POEGMA-grafted brush coatings

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The effect of temperature and buffer solutions with different pH (often used in biomedical applications) on the behavior of POEGMA brush coatings, synthesized without incorporated functional groups, was for the first time studied in details using water contact angle (CA) measurements and atomic force microscopy (AFM). Thermal response of grafted brush-coatings based on poly(oligo(ethylene glycol) methacrylate)s (POEGMA)s is driven by lower critical solution temperature (LCST) phenomenon. Obtained CA and AFM results suggest strong impact of the buffer solutions on the values of LCST transition and contact angle ranges, as well as on coatings morphology. In turn, ellipsometry data reflect penetration of salt ions from buffer solutions into brush-coatings. In contrast to “typical” behavior of POEGMA coatings in water, different mechanisms available below LCST in the buffer solutions destroy hydrated layers surrounding POEGMA macromolecules leading to their collapse.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ariga K, Fakhrullin R (2021) Nanoarchitectonics on living cells. RSC Adv 11:18898–18914

    Article  CAS  Google Scholar 

  2. Minullina R, Osin Y, Ishmuchametova D, Fakhrullin R (2011) Interfacing multicellular organisms with polyelectrolyte shells and nanoparticles: a Caenorhabtidis elegans study. Langmuir 27:7708–7713

    Article  CAS  Google Scholar 

  3. Cavallaro G, Lazzara G, Lisuzzo L et al (2018) Selective adsorption of oppositely charged PNIPAAM on halloysite surfaces: a route to thermo-responsive nanocarriers. Nanotechnology 29:325702

    Article  Google Scholar 

  4. Chernykh M, Zavalny D, Sokolova V et al (2021) A new water-soluble thermosensitive star-like copolymer as a promising carrier of the chemotherapeutic drug doxorubicin. Materials 14:3517

    Article  CAS  Google Scholar 

  5. Heinemann C, Adam J, Kruppke B et al (2021) How to get them off?—assessment of innovative techniques for generation and detachment of mature osteoclasts for biomaterial resorption studies. Int J Mol Sci 22:1329

    Article  CAS  Google Scholar 

  6. Harimoto M, Yamato M, Hirose M et al (2002) Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. J Biomed Mater Res 62:464–470

    Article  CAS  Google Scholar 

  7. Awsiuk K, Stetsyshyn Y, Raczkowska J et al (2019) Temperature-controlled orientation of proteins on temperature-responsive grafted polymer brushes: poly(butyl methacrylate) vs poly(butyl acrylate): morphology, wetting, and protein adsorption. Biomacromol 20:2185–2197

    Article  CAS  Google Scholar 

  8. Stetsyshyn Y, Raczkowska J, Budkowski A et al (2016) Cholesterol-based grafted polymer brushes as alignment coating with temperature-tuned anchoring for nematic liquid crystals. Langmuir 32:11029–11038

    Article  CAS  Google Scholar 

  9. Budkowski A, Klein J, Fetters L (1995) Brush formation by symmetrical and by highly asymmetrical diblock copolymers at homopolymer interfaces. Macromolecules 28:8571–8578

    Article  CAS  Google Scholar 

  10. Stetsyshyn Y, Raczkowska J, Harhay K et al (2021) Temperature-responsive and multi-responsive grafted polymer brushes with transitions based on critical solution temperature: synthesis, properties, and applications. Colloid Polym Sci 299:363–383

    Article  CAS  Google Scholar 

  11. Satish L, Millan S, Das S et al (2017) Thermal aggregation of bovine serum albumin in conventional buffers: an insight into molecular level interactions. J Solut Chem 46:831–848

    Article  CAS  Google Scholar 

  12. Pavani P, Kumar K, Rani A et al (2021) The influence of sodium phosphate buffer on the stability of various proteins: insights into protein-buffer interactions. J Mol Liq 331:115753

    Article  CAS  Google Scholar 

  13. Janiszewska N, Raczkowska J, Budkowski A et al (2020) Dewetting polymer films controlled by protein adsorption. Langmuir 36:11817–11828

    Article  CAS  Google Scholar 

  14. Stetsyshyn Y, Zemla J, Zolobko O et al (2012) Temperature and pH dual-responsive coatings of oligoperoxide-graft-poly(N-isopropylacrylamide): wettability, morphology, and protein adsorption. J Colloid Interface Sci 387:95–105

    Article  CAS  Google Scholar 

  15. Stetsyshyn Y, Fornal K, Raczkowska J et al (2012) Temperature and pH dual-responsive POEGMA-based coatings for protein adsorption. J Colloid Interface Sci 411:247–256

    Article  Google Scholar 

  16. Koenig M, Rodenhausen K, Rauch S et al (2018) Salt sensitivity of the thermoresponsive behavior of PNIPAAm brushes. Langmuir 34:2448–2454

    Article  CAS  Google Scholar 

  17. Otulakowski Ł, Kasprów M, Strzelecka A et al (2021) Thermal behaviour of common thermoresponsive polymers in phosphate buffer and in its salt solutions. Polymers 13:90

    Article  CAS  Google Scholar 

  18. Du H, Wickramasinghe R, Qian X (2010) Effects of salt on the lower critical solution temperature of poly(N-Isopropylacrylamide). J Phys Chem B 114:16594–16604

    Article  CAS  Google Scholar 

  19. Du H, Qian X (2011) Molecular dynamics simulations of PNIPAM-co-PEGMA copolymer hydrophilic to hydrophobic transition in NaCl solution. J Polym Sci B Polym Phys 49:1112–1122

    Article  CAS  Google Scholar 

  20. Lutz JF (2008) Polymerization of Oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J Polym Sci A Polym Chem 46:3459–3470

    Article  CAS  Google Scholar 

  21. Lishchynskyi O, Stetsyshyn Y, Raczkowska J et al (2021) Fabrication and impact of fouling-reducing temperature-responsive POEGMA coatings with embedded CaCO3 nanoparticles on different cell lines. Materials 14:1417

    Article  CAS  Google Scholar 

  22. Guangguo W, Yuanpei L, Mei H, Xiaoxuan L (2006) Novel thermo-sensitive membranes prepared by rapid bulk photo-grafting polymerization of N, N-diethylacrylamide onto the microfiltration membranes nylon. J Membr Sci 283:13–20

    Article  Google Scholar 

  23. Zhang Y, Furyk S, Bergbreiter D, Cremer P (2005) Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J Am Chem Soc 127:14505–14510

    Article  CAS  Google Scholar 

  24. Zhang Y, Furyk S, Sagle L et al (2007) Effects of Hofmeister anions on the LCST of PNIPAM as a function of molecular weight. J Phys Chem C 111:8916–8924

    Article  CAS  Google Scholar 

  25. Eeckman F, Amighi K, Moes A (2001) Effect of some physiological and non-physiological compounds on the phase transition temperature of thermoresponsive polymers intended for oral controlled-drug delivery. Int J Pharm 222:259–270

    Article  CAS  Google Scholar 

  26. Eeckman F, Moes A, Amighi K (2002) Evaluation of a new controlled-drug delivery concept based on the use of thermoresponsive polymers. Int J Pharm 241:113–125

    Article  CAS  Google Scholar 

  27. Vanzi F, Madan B, Sharp K (1998) Effect of the protein denaturants urea and guanidinium on water structure: a structural and thermodynamic study. J Am Chem Soc 120:10748–10753

    Article  CAS  Google Scholar 

  28. Vonhelden G, Wyttenbach T, Bowers M (1995) Conformation of macromolecules in the gas phase: use of matrix-assisted laser desorption methods in ion chromatography. Science 267:1483–1485

    Article  CAS  Google Scholar 

  29. Yokoyama Y, Hirajima R, Morigaki K et al (2007) Alkali-cation affinities of polyoxyethylene dodecylethers and helical conformations of their cationized molecules studied by electrospray mass spectrometry. J Am Soc Mass Spectrom 18:1914–1920

    Article  CAS  Google Scholar 

  30. Cruickshank J, Hubbard H, Boden N, Ward I (1995) The role of ionic salts in determining Tg and ionic conductivity in concentrated PEG electrolyte solutions. Polymer 36:3779–3781

    Article  CAS  Google Scholar 

  31. Mohsen-Nia M, Rasa H, Modarress H (2006) Cloud-point measurements for (water+poly(ethylene glycol)+salt) ternary mixtures by refractometry method. J Chem Eng Data 51:1316–1320

    Article  CAS  Google Scholar 

  32. Nozary S, Modarress H, Eliassi A (2003) Cloud-point measurements for salt+poly(ethylene glycol)+water systems by viscometry and laser beam scattering methods. J Appl Polym Sci 89:1983–1990

    Article  CAS  Google Scholar 

  33. Witte J, Krause P, Kyrey T (2020) Grazing incidence neutron spin echo study of poly(N-isopropylacrylamide) brushes. Macromolecules 53:1819–1830

    Article  CAS  Google Scholar 

  34. Maeda Y, Kitano H (1995) The structure of water in polymer systems as revealed by Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 51:2433–2446

    Article  Google Scholar 

  35. Piechocki K, Kozanecki M, Saramak J (2020) Water structure and hydration of polymer network in PMEO2MA hydrogels. Polymer 210:122974

    Article  CAS  Google Scholar 

  36. Dalgakiran E, Tatlipinar H (2018) Atomistic insights on the LCST behavior of PMEO2MA in water by molecular dynamics simulations. J Polym Sci B Polym Phys 56:429–441

    Article  CAS  Google Scholar 

  37. Dalgakiran E, Tatlipinar H (2018) The role of hydrophobic hydration on the LCST behaviour of POEGMA300 by all-atom molecular dynamics simulation. Phys Chem Chem Phys 20:15389–15399

    Article  CAS  Google Scholar 

  38. Wischerhoff E, Badi N, Laschewsky A, Lutz JF (2011) Smart polymer surfaces: concepts and applications in biosciences. Adv Polym Sci 240:1–33

    CAS  Google Scholar 

Download references

Funding

Yana Shymborska thanks for financial support from U1U/P05/NO/03.43.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yurij Stetsyshyn or Andrzej Budkowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 444 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shymborska, Y., Stetsyshyn, Y., Raczkowska, J. et al. Impact of the various buffer solutions on the temperature-responsive properties of POEGMA-grafted brush coatings. Colloid Polym Sci 300, 487–495 (2022). https://doi.org/10.1007/s00396-022-04959-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04959-1

Keywords

Navigation