Skip to main content

Synthesis of poly(lactic acid)-based macro-porous foams with thermo-active shape memory property via W/O high internal phase emulsion polymerization

Abstract

Here, the synthesis of macro-porous polymer foams by using bio-based poly(lactic acid) (PLA) as macro-monomer was carried out via W/O high internal phase emulsion (HIPE) polymerization. The PLA macro-monomer end-capped by di-acrylate groups was employed as the continuous phase and copolymerized with fluorinated methacrylate, 2-ethylhexyl acrylate, and acrylate crosslinkers. The interconnected macro-porous polyHIPEs showed the thermo-responsive shape memory property. It is found that the transition temperature (Ttrans) of the polyHIPEs in shape recover cycle is adjustable in the temperature range from 24.5 to 107.8 °C, corresponding to their glass transition temperature (Tg), which can be controlled by the ratio of macro-, fluorinated, and acrylate monomers. In this work, the best shape memory property is obtained with a PLA content over 40%. The corresponding polyHIPEs could change their shape with a compress ratio as high as 50% at the temperature above Ttrans, maintain the temporary shape by cooling to room temperature, and exhibit a nearly 100% recovery upon reheating. Scanning electron microscope (SEM) results suggest that the macro-porous structure can be maintained without collapse of the pores in at least four compression-recovery cycles. These polyHIPEs also have degradation capabilities.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Xiao R, Huang WH (2020) Macromol Biosci 20(8):2000108

    CAS  Article  Google Scholar 

  2. Bilici C, Okay O (2013) Macromolecules 46(8):3125–3131

    CAS  Article  Google Scholar 

  3. Lee KM, Koerner H, Vaia RA, Bunning TJ, White TJ (2011) Soft Matter 7(9):4318–4324

    CAS  Article  Google Scholar 

  4. Zhang B, Li H, Cheng J, Ye H, Sakhaei AH, Yuan C, Rao P, Zhang YF, Chen Z, Wang R, He X, Liu J, Xiao R, Qu S, Ge Q (2021) Adv Mater 33(27):2101298

    CAS  Article  Google Scholar 

  5. Qiu Y, Xi J, Wanyhan Q, Wu D (2020) ACS Appl. Polym Mater 2(4):1672–1681

    CAS  Google Scholar 

  6. Basak S, Bandyopadhyay A (2021) Macromol Chem Phys 2100195

  7. Yang B, Huang W, Li C, Li L (2006) Polymer 47(4):1348–1356

    CAS  Article  Google Scholar 

  8. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Nat Mater 3(2):115–120

    CAS  Article  Google Scholar 

  9. Zubair Z, L’Hostis G, Goda I (2021) Mater Lett 291(9):129511

  10. Deng H, Sattari K, Xie Y, Liao P, Yan Z, Lin J (2020) Nat Commun 11:6325

    CAS  Article  Google Scholar 

  11. Dietsch B, Tong T (2007) J Adv Mater 39(2):3–12

    CAS  Google Scholar 

  12. Wu G, Xie P, Yang H, Dang K, Xu Y, Sain M, Turng LS, Yang W (2021) J Mater Sci 56(20):11579–11604

    CAS  Article  Google Scholar 

  13. Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K (2012) Chem Rev 112(7):3959–4015

    CAS  Article  Google Scholar 

  14. Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL (2017) Chem Soc Rev 46:481–558

    CAS  Article  Google Scholar 

  15. Foudazi R (2021) React Funct Polym 164:104917

  16. Stubenrauch C, Menner A, Bismarck A, Drenckhan W (2018) Angew Chem Int Edit 57(32):10024–10032

    CAS  Article  Google Scholar 

  17. Barkan-Öztürk H, Menner A, Bismarck A (2021) Ind Eng Chem Res 60(39):14013–14025

    Article  Google Scholar 

  18. Horowitz R, Lamson M, Cohen O, Fu TB, Cuthbert J, Matyjaszewski K, Silverstein MS (2021) Polymer 217:123444

  19. Mert HH (2020) Int J Energ Res 44(8):6583–6594

    CAS  Article  Google Scholar 

  20. Onder OC, Utroša P, Caserman S, Podobnik M, Žagar E, Pahovnik D (2021) Macromolecules 54(18):8321–8330

    CAS  Article  Google Scholar 

  21. Vásquez L, Davis A, Gatto F, An MN, Drago F, Pompa PP, Athanassiou A, Fragouli D (2021) Sep Purif Techno 225(15):117748

  22. Dikici BA, Malayeri A, Sherborne C, Dikici S, Paterson T, Dew L, Hatton P, Asencio IO, MacNeil S, Langford C, Cameron NR, Claeyssens F (2021) Biomacromol. https://doi.org/10.1021/acs.biomac.1c01129

    Article  Google Scholar 

  23. Silverstein MS (2017) Polymer 126:261–282

    CAS  Article  Google Scholar 

  24. Zhang T, Sanguramath RA, Israel S, Silverstein MS (2019) Macromolecules 52(15):5445–5479

    CAS  Article  Google Scholar 

  25. Zhao Q, Qi HJ, Xie T (2015) Prog Polym Sci 49–50:79–120

    Article  Google Scholar 

  26. Ishimoto K, Arimoto M, Ohara H, Kobayashi S, Ishii M, Morita K, Yamashita H, Yabuuchi N (2009) Biomacromol 10(10):2719–2729

    CAS  Article  Google Scholar 

  27. Han DK, Hubbell JA (1997) Macromolecules 30(20):6077–6083

    CAS  Article  Google Scholar 

  28. Yong X, Hu Q, Zhou E, Deng J, Wu Y (2019) ACS Biomater. Sci Eng 5(10):5072–5081

    CAS  Google Scholar 

  29. Zhang G, Zhu Y, Wang Y, Wei D, Wu Y, Zheng L, Bai H, Xiao H, Zhang Z (2019) RSC Adv 9(36):20513–20517

    CAS  Article  Google Scholar 

  30. Choi N, Lendlein A (2007) Soft Matt 3:901–909

    CAS  Article  Google Scholar 

  31. Spenlehauer G, Vert M, Benoit JP, Boddaert A (1989) Biomaterials 10:557–563

    CAS  Article  Google Scholar 

  32. Wang F, Weiss RA (2018) Macromolecules 51(18):7386–7395

    CAS  Article  Google Scholar 

  33. Zhang A, Okrasa L, Pakula T, Schlüter AD (2004) J Am Chem Soc 126(21):6658–6666

    CAS  Article  Google Scholar 

  34. Juin C, Langlois V, Guerin P, Borgne AL (1999) Macromol Rapid Commun 20:289–293

    CAS  Article  Google Scholar 

  35. Ratcharak O, Sane AJ (2014) Supercrit Fluid 89:106–112

    CAS  Article  Google Scholar 

  36. Lucht LM, Peppas NA (1987) Fuel 66(6):803–809

    CAS  Article  Google Scholar 

  37. Silverstein MS (2014) Prog Polym Sci 39(1):199–234

    CAS  Article  Google Scholar 

  38. Lumelsky Y, Silverstein MS (2009) Macromolecules 42(5):1627–1633

    CAS  Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2020YFE0100300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Li or Longhai Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 660 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiu, T., Xu, G., Li, X. et al. Synthesis of poly(lactic acid)-based macro-porous foams with thermo-active shape memory property via W/O high internal phase emulsion polymerization. Colloid Polym Sci 300, 415–427 (2022). https://doi.org/10.1007/s00396-022-04952-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04952-8

Keywords

  • Porous polymers
  • Shape memory
  • High internal phase emulsion
  • Degradation