Skip to main content
Log in

Bimetallic nickel iron zeolitic imidazolate fibers as biosensing platform for neurotransmitter serotonin

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Zeolitic imidazolate frameworks (ZIFs) are widely used in recent times for catalysis and in biomolecules detection. Many neurotransmitters are associated with human body, and among them, serotonin (5-HT) (SER) plays a dynamic role in biological functions. Any alteration in its level leads to severe problems including death, so the monitoring SER is very much concerned. In this direction herein, we successfully synthesized nickel–iron-based ZIF (NiFe-ZIF) microfibers for demonstrating the sensing of neurotransmitter serotonin (SER). Further, the electrochemical behavior investigated by electrochemical studies ensures its high conductivity and sensing ability towards SER. Moreover, the SWV studies also exhibit wide linear range of 40 nM–30 µM with detection limit 3 nM confirming excellent platform role for biomedical applications. Moreover, the real-time application of the proposed sample was also investigated by serum with the exhibition of exceptional outcome of the proposed biosensor.

Graphical abstract

Bi-metallic NiFe based ZIF MFs have been synthesized and successfully utilized for the first time as a biosensor for an effective detection of the neurotransmitter and hormone SER with very low detection limit. The designed sensor is also applicable for the real time analysis and can be further applicable for other device fabrications such as point of care devices like glucose sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nishitani S, Sakata T (2020) Enhancement of signal-to-noise ratio for serotonin detectionwith well-designed nanofilter-coated potentiometric electrochemical biosensor. ACS Appl. Mater. Interfaces 12:14761–14769. https://doi.org/10.1021/acsami.9b19309

    Article  CAS  Google Scholar 

  2. Li J, Si Y, Park YE, Choi JS, Jung SM, Lee JE, Lee HJ (2021) A serotonin voltammetricbiosensor composed of carbon nanocomposites and DNA aptamer. Microchim Acta 188. https://doi.org/10.1007/s00604-021-04798-x

  3. Ashraf G, Asif M, Aziz A, Iftikhar T, Liu H (2021) Rice-spikelet-like copper oxide decorated with platinum stranded in the cnt network for electrochemical in vitro detection of serotonin. ACS Appl Mater Interfaces 13:6023–6033. https://doi.org/10.1021/acsami.0c20645

  4. Zhang J, Jaquins-Gerstl A, Nesbitt KM, Rutan, SC, Michael AC, Weber SG (2013) In vivomonitoring of serotonin in the striatum of freely moving rats with one minute temporalresolution by online microdialysis-capillary high-performance liquid chromatography atelevated temperature and pressure. Anal Chem 85:9889–9897. https://doi.org/10.1021/ac4023605

  5. Hsieh MM, Chang HT (2005) Discontinuous electrolyte systems for improved detection of biologically active amines and acids by capillary electrophoresis with laser-induced native fluorescence detection. Electrophoresis 26:187–195. https://doi.org/10.1002/elps.200406123

  6. Ramon-Marquez T, Medina-Castillo AL, Fernandez-Gutierrez A, Fernandez-Sanchez JF (2016) A novel optical biosensor for direct and selective determination of serotonin inserum by solid surface-room temperature phosphorescence. Biosens Bioelectron 82:217–223. https://doi.org/10.1016/j.bios.2016.04.008

    Article  CAS  PubMed  Google Scholar 

  7. Wang G, Geng L (2005) Statistical and generalized two-dimensional correlation spectroscopy of multiple ionization states. Fluorescence of neurotransmitter serotonin. Anal Chem 77:20–29. https://doi.org/10.1021/ac0492362

  8. Israël M (2003) A chemiluminescent serotonin assay. Neurochem Int 42:215–220. https://doi.org/10.1016/S0197-0186(02)00095-5

  9. Manz B, Kosfeld H, Harbauer G, Grill HJ, Pollow K (1985) Radioimmunoassay of humanserum serotonin. Clin Chem Lab Med 23:657–662. https://doi.org/10.1515/cclm.1985.23.10.657

  10. Al-Graiti W, Foroughi J, Liu Y, Chen J (2019) Hybrid graphene/conducting polymer stripsensors for sensitive and selective electrochemical detection of serotonin. ACS Omega 4:22169–22177. https://doi.org/10.1021/acsomega.9b03456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mullani SB, Dhodamani AG, Shellikeri A, Mullani NB, Tawade AK, Tayade SN, Biscay J, Dennany L, Delekar SD (2020) Structural refinement and electrochemical propertiesof one dimensional (ZnO NRs)1–x(CNs)x functional hybrids for serotonin sensingstudies. Sci Rep 10:1–18. https://doi.org/10.1038/s41598-020-72756-3

    Article  CAS  Google Scholar 

  12. Ehrenworth AM, Claiborne T, Peralta-Yahya P (2017) Medium-throughput screen ofmicrobially produced serotonin via a g-protein-coupled receptor-based sensor. Biochemistry 56:5471–5475. https://doi.org/10.1021/acs.biochem.7b00605

    Article  CAS  PubMed  Google Scholar 

  13. Dinarvand M, Neubert E, Meyer D, Selvaggio G, Mann FA, Erpenbeck L, Kruss S (2019) Near-infrared imaging of serotonin release from cells with fluorescent nanosensors. Nano Lett 19:6604–6611. https://doi.org/10.1021/acs.nanolett.9b02865

    Article  CAS  PubMed  Google Scholar 

  14. Kempahanumakkagari S, Vellingiri K, Deep A, Kwon EE, Bolan N, Kim KH (2018) Metal–organic framework composites as electrocatalysts for electrochemical sensingapplications. Coord Chem Rev 357:105–129. https://doi.org/10.1016/j.ccr.2017.11.028

    Article  CAS  Google Scholar 

  15. Mahmood A, Guo W, Tabassum H, Zou R (2016) Metal-organic framework-basednanomaterials for electrocatalysis. Adv Energy Mater 6. https://doi.org/10.1002/aenm.201600423

  16. Kaneti YV, Tang J, Salunkhe RR, Jiang X, Yu A, Wu KWC, Yamauchi Y (2017) Nanoarchitectured design of porous materials and nanocomposites from metal-organicframeworks. Adv Mater 29. https://doi.org/10.1002/adma.201604898

  17. Sankar SS, Karthick K, Sangeetha K, Karmakar A, Kundu S (2020) Transition-metal-basedzeolite imidazolate framework nanofibers via an electrospinning approach: a review. ACS Omega 5:57–67. https://doi.org/10.1021/acsomega.9b03615

    Article  CAS  PubMed  Google Scholar 

  18. Sankar SS, Karthick K, Sangeetha K, Karmakar A, Ragunath M, Kundu S (2021) Currentperspectives on 3D ZIFs incorporated with 1D carbon matrices as fibers viaelectrospinning process towards electrocatalytic water splitting: a review. J Mater Chem A 9:11961–12002. https://doi.org/10.1039/D1TA01407B

    Article  CAS  Google Scholar 

  19. Chen C, Xiong D, Gu M, Lu C, Yi FY, Ma X (2020) MOF-derived bimetallic CoFe-PBAcomposites as highly selective and sensitive electrochemical sensors for hydrogenperoxide and nonenzymatic glucose in human serum. ACS Appl Mater Interfaces 12:35365–35374. https://doi.org/10.1021/acsami.0c09689

    Article  CAS  PubMed  Google Scholar 

  20. Sankar SS, Karthick K, Sangeetha K, Karmakar A, Kundu S (2020) Polymeric nanofiberscontaining coni-based zeoliticimidazolate framework nanoparticles forelectrocatalytic water oxidation. ACS Appl Nano Mater 3:4274–4282. https://doi.org/10.1021/acsanm.0c00434

  21. Ma W, Jiang Q, Yu P, Yang L, Mao L (2013) Zeoliticimidazolate framework-basedelectrochemical biosensor for in vivo electrochemical measurements. Anal Chem 85:7550–7557. https://doi.org/10.1021/ac401576u

    Article  CAS  PubMed  Google Scholar 

  22. Ma B, Cheong LZ, Weng X, Tan CP, Shen C (2018) Lipase@ZIF-8 nanoparticles-basedbiosensor for direct and sensitive detection of methyl parathion. Electrochim Acta 283:509–516. https://doi.org/10.1016/j.electacta.2018.06.176

    Article  CAS  Google Scholar 

  23. Yu G, Xia J, Zhang F, Wang Z (2017) Hierarchical and hybrid RGO/ZIF-8 nanocomposite aselectrochemical sensor for ultrasensitive determination of dopamine. J Electroanal Chem 801:496–502. https://doi.org/10.1016/j.jelechem.2017.08.038

    Article  CAS  Google Scholar 

  24. Thenrajan T, Samsankar SS, Girija S, Kundu S, Wilson J (2021) Cobalt- iron zeoliticimidazolate frameworks (ZIFs) as fibers for an effective detection of hydroquinone. Dalton Trans 50:10540–10548. https://doi.org/10.1039/D1DT01718G

    Article  CAS  PubMed  Google Scholar 

  25. Sumathi C, Muthukumaran P, Radhakrishnan S, Ravi G, Wilson J (2015) Riboflavindetection by α-Fe2O3/MWCNT/AuNPs-based composite and a study of the interaction ofriboflavin with DNA, RSC. Adv 5:17888–17896. https://doi.org/10.1039/c4ra14762f

  26. Sun L, Hendon CH, Park SS, Tulchinsky Y, Wan R, Wang F, Walsh A, Dincǎ M (2017) Isiron unique in promoting electrical conductivity in MOFs? Chem Sci 8:4450–4457. https://doi.org/10.1039/c7sc00647k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sankar SS, Karthick K, Kumaravel S, Karmakar A, Ragunath M, Kundu S (2021) Temperature-controlled structural variations of meticulous fibrous networks of nife-polymeric zeolite imidazolate frameworks for enhanced performance in electrocatalyticwater-splitting reactions. Inorg Chem https://doi.org/10.1021/acs.inorgchem.1c01698

  28. Girija S, Sankar SS, Kundu S, Wilson J (2020) Microfibers of embellished cobalt—zeoliteimidazole framework for vitamin—B 2 Detection. J Electrochem Soc 167:137511. https://doi.org/10.1149/1945-7111/abba60

    Article  CAS  Google Scholar 

  29. Sudhasree S, ShakilaBanu A, Brindha P, Kurian GA (2014) Synthesis of nickel nanoparticlesby chemical and green route and their comparison in respect to biological effect andtoxicity. Toxicol Environ Chem 96:743–754. https://doi.org/10.1080/02772248.2014.923148

  30. Liu Q, Zhao C, Chen M, Liu Y, Zhao Z, Wu F, Li Z, Weiss PS, Andrews AM, Zhou C (2020) Flexible multiplexed In2O3 nanoribbonaptamer-field-effect transistors for biosensing. IScience 23:101469. https://doi.org/10.1016/j.isci.2020.101469

Download references

Funding

The author JW gratefully acknowledges the RUSA 2.0 [F.24–51/2014-U, Policy (TN Multi-Gen), Dept. of. Edn, Gol] for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subrata Kundu or Jeyaraj Wilson.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1210 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thenrajan, T., Sankar, S.S., Kundu, S. et al. Bimetallic nickel iron zeolitic imidazolate fibers as biosensing platform for neurotransmitter serotonin. Colloid Polym Sci 300, 223–232 (2022). https://doi.org/10.1007/s00396-022-04947-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04947-5

Keywords

Navigation