Skip to main content
Log in

Diffusiophoretic velocity of a spherical soft particle

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The general expression is derived for the diffusiophoretic velocity of a spherical soft particle (that is, a spherical hard particle consisting of the particle core covered with an ion-penetrable surface layer of polyelectrolytes) in an electrolyte concentration gradient. For a weakly charged soft particle, the obtained general expression for the diffusiophoretic velocity is shown to reproduce the results derived by Huang and Keh (J Phys Chem B (2012) 116: 7575–7589). A simple approximate analytic expression is obtained for the diffusiophoretic velocity applicable for the case where the particle core radius and the thickness of the polyelectrolyte layer are much larger than the Debye length and the Brinkman screening length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Ebel JP, Anderson JL, Prieve DC (1988) Diffusiophoresis of latex particles in electrolyte gradients. Langmuir 4:396–406

    Article  CAS  Google Scholar 

  2. Derjaguin BV, Dukhin SS, Korotkova AA (1961) Diffusiophoresis in electrolyte solutions and its role in the mechanism of film formation of cationic latex by ionic deposition. Kolloidyni Zh 23:53–58

    Google Scholar 

  3. Prieve DC (1982) Migration of a colloidal particle in a gradient of electrolyte concentration. Adv Colloid Interface Sci 16:321–335

    Article  CAS  Google Scholar 

  4. Prieve DC, Anderson JL, Ebel JP, Lowell ME (1984) Motion of a particle generated by chemical gradients. Part 2. Electrolytes J Fluid Mech 148:247–269

    Article  CAS  Google Scholar 

  5. Prieve DC, Roman R (1987) Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. J Chem Soc Faraday Trans II 83:1287–1306

    Article  CAS  Google Scholar 

  6. Anderson JL (1989) Colloid transport by interfacial forces. Ann Rev Fluid Mech 21:61–99

    Article  Google Scholar 

  7. Pawar Y, Solomentsev YE, Anderson JL (1993) Polarization effects on diffusiophoresis in electrolyte gradients. J Colloid Interface Sci 155:488–498

    Article  CAS  Google Scholar 

  8. Keh HJ, Chen SB (1993) Diffusiophoresis and electrophoresis of colloidal cylinders. Langmuir 9:1142–1149

    Article  CAS  Google Scholar 

  9. Keh HJ, Wei YK (2000) Diffusiophoretic mobility of spherical particles at low potential and arbitrary double-layer thickness. Langmuir 16:5289–5294

    Article  CAS  Google Scholar 

  10. Huang PY (2012) Keh HJ (2012) Diffusiophoresis of a spherical soft particle in electrolyte gradients. J Phys Chem B 116:7575–7589

    Article  CAS  Google Scholar 

  11. Keh HJ (2016) Diffusiophoresis of charged particles and diffusioosmosis of electrolyte solutions. Curr Opin Colloid Interface Sci 24:13–22

    Article  CAS  Google Scholar 

  12. Tseng S, Su C-Y, Hsu J-P (2016) Diffusiophoresis of a charged, rigid sphere in a Carreau fluid. J Colloid Interface Sci 465:54–57

    Article  CAS  Google Scholar 

  13. Hsu J-P, Hsieh S-H, Tseng S (2017) Diffusiophoresis of a pH-regulated polyelectrolyte in a pH-regulated nanochannel. Sensors Actuators B: Chemical 252:1132–1139

    Article  CAS  Google Scholar 

  14. Chiu HC, Keh HJ (2017) Diffusiophoresis of a charged particle in a microtube. Electrophoresis 38:2468–2478

    Article  CAS  Google Scholar 

  15. Chiu HC, Keh HJ (2017) Electrophoresis and diffusiophoresis of a colloidal sphere with double-layer polarization in a concentric charged cavity. Microfluid Nanofluid 21:45

    Article  Google Scholar 

  16. Chiu YC, Keh HJ (2018) Diffusiophoresis of a charged porous particle in a charged cavity. J Phys Chem B 122:9803–9814

    Article  CAS  Google Scholar 

  17. Chiu YC, Keh HJ (2018) Diffusiophoresis of a charged particle in a charged cavity with arbitrary electric double layer thickness. Microfluidics Nanofluidics 22:84

    Article  Google Scholar 

  18. Yeh YZ, Keh HJ (2018) Diffusiophoresis of a charged porous shell in electrolyte gradients. Colloid Polym Sci 296:451–459

    Article  CAS  Google Scholar 

  19. Gupta A, Rallabandi B, Howard A. Stone HA (2019) Diffusiophoretic and diffusioosmotic velocities for mixtures of valence-asymmetric electrolytes. Phys Rev Fluids 4: 043702

  20. Gupta A, Shim S, Stone HA (2020) Diffusiophoresis: from dilute to concentrated electrolytes. Soft Matter 16:6975–6984

    Article  CAS  Google Scholar 

  21. Lin WC, Keh HJ (2020) Diffusiophoresis in suspensions of charged soft particles. Colloids Interfaces 4:30

    Article  CAS  Google Scholar 

  22. Sin S (2020) Diffusiophoretic separation of colloids in microfluidic flows. Phys Fluids 32: 101302

  23. Wilson JL, Shim S, Yu YE, Gupta A, Stone HA (2020) Diffusiophoresis in multivalent electrolytes. Langmuir 36:7014–7020

    Article  CAS  Google Scholar 

  24. Wu Y, Chang W-C, Fan L, Jian E, Tseng J, Lee E (2021) Diffusiophoresis of a highly charged soft particle in electrolyte solutions induced by diffusion potential Phys. Fluids 33, 012014

  25. Wu Y, Lee E (2021) Diffusiophoresis of a highly charged soft particle normal to a conducting plane. Electrophoresis. https://doi.org/10.1002/elps.202100052

    Article  PubMed  Google Scholar 

  26. Majee PS, Bhattacharyya S (2021) Impact of ion partitioning and double layer polarization on diffusiophoresis of a pH-regulated nanogel. Meccanica 56:1989–2004

    Article  Google Scholar 

  27. Ohshima H (2021) Approximate analytic expressions for the diffusiophoretic velocity of a spherical colloidal particle. Electrophoresis. https://doi.org/10.1002/elps.202100178

    Article  PubMed  Google Scholar 

  28. Ohshima H (2021) Diffusiophoretic velocity of a large spherical colloidal particle in a solution of general electrolytes. Colloid Polym Sci 299:1877–1884. https://doi.org/10.1007/s00396-021-04898-3

    Article  CAS  Google Scholar 

  29. Brinkman HC (1947) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res 1:27–34

    Article  Google Scholar 

  30. Debye P, Bueche AM (1948) Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J Chem Phys 16:573–579

    Article  CAS  Google Scholar 

  31. Ohshima, (1994) Electrophoretic mobility of soft particles. J Colloid Interface Sci 62:474–483

    Article  Google Scholar 

  32. Ohshima, (1995) Electrophoresis of soft particles. Adv Colloid Interface Sci 62:189–235

    Article  CAS  Google Scholar 

  33. Ohshima H (2000) On the general expression for the electrophoretic mobility of a soft particle. J Colloid Interface Sci 228:190–193

    Article  CAS  Google Scholar 

  34. Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, Amsterdam

    Google Scholar 

  35. Levine S, Levine M, Sharp KA, Brooks DE (1983) Theory of the electrokinetic behavior of human erythrocytes. Biophys J 42:127–135

    Article  CAS  Google Scholar 

  36. Bos R, van der Mei HC, Busscher HJ (1998) ‘Soft-particle’ analysis of the electrophoretic mobility of a fibrillated and non-fibrillated oral streptococcal strain: Streptococcus salivarius. Biophys Chem 74:251–255

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohshima.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohshima, H. Diffusiophoretic velocity of a spherical soft particle. Colloid Polym Sci 300, 153–157 (2022). https://doi.org/10.1007/s00396-021-04933-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04933-3

Keywords

Navigation