Skip to main content
Log in

Dispersion and agglomeration behaviors of submicron ceria particles in concentrated slurries

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Dispersion behaviors of ceria (CeO2) particles in polishing slurries have direct influence on surface quality, especially for ultra-smooth optics, but their actual states have not been characterized and understood well due to much low concentration limit of traditional analysis technologies. In this work, we study dispersion and agglomeration behaviors of submicron ceria particles in concentrated slurries with ultrasonic attenuation technology and electroacoustic technology, where particle size distribution (PSD) models and their base transformation are analyzed at beginning. It is found that obtained volume-based PSDs are much wide lognormal ones, and they should be transformed to number-based ones and corrected. The number-based upper size, d99, is in the range from 0.1 to 0.8 μm mainly. And zeta potential of the ceria particles in these slurries could be obtained by the advanced electroacoustic theories in direct measurement, with values between 0 and − 60 mV. The ceria particles have different dispersion behaviors and zeta potential values in these slurries, and higher zeta potential values could promote particle dispersion in the slurry with de-ionized water, which can be explained well by the extended Derjaguin–Landau–Verwey–Overbeek theory. These results would provide useful guideline to characterize, understand, and optimize dispersion behaviors of engineered particles in concentrated slurries.

Graphic abstract

The volume-based d99 and zeta potential of the ceria particles in 20 wt% slurries with different carrier liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sreeremya TS, Prabhakaran M, Ghosh S (2015) Tailoring the surface properties of cerium oxide nanoabrasives through morphology control for glass CMP. RSC Adv 5:84056

    Article  CAS  Google Scholar 

  2. Miah AT, Saikia P (2018) Dispersion of nanosized ceria-terbia solid solutions over silica surface: evaluation of structural characteristics and catalytic activity. Mol Catal 451:96–104

    Article  CAS  Google Scholar 

  3. Melchionna M, Fornasiero P (2014) The role of ceria-based nanostructured materials in energy applications. Mater Today 17(7):349–357

    Article  CAS  Google Scholar 

  4. Mauro M, Crosera M, Monai M, Montini T, Fornasiero P, Bovenzi M, Adami G, Turco G, Filon FL (2019) Cerium oxide nanoparticles absorption through intact and damaged human skin. Molecules 24(20):3759

    Article  PubMed Central  CAS  Google Scholar 

  5. Ha MK, Shim YJ, Yoon TH (2018) Effects of agglomeration on in vitro dosimetry and cellular association of silver nanoparticles. Environ Sci 5:446

    CAS  Google Scholar 

  6. Li CC, Li MJ, Huang YP (2017) Dispersion of aluminum-doped zinc oxide nanopowder in non-aqueous suspensions. J Am Ceram Soc 100:5020–5029

    Article  CAS  Google Scholar 

  7. Szilagyi I, Trefalt G, Tiraferri A, Maroni P, Borkovec M (2014) Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation. Soft Matter 10:2479

    Article  PubMed  CAS  Google Scholar 

  8. Yu YX, Ma LQ, Xu HX, Sun XF, Zhang ZJ, Ye GC (2018) DLVO theoretical analyses between montmorillonite and fine coal under different pH and divalent cations. Powder Technol 330:147–151

    Article  CAS  Google Scholar 

  9. Rodríguez-Rojasa F, Morenob R, Guiberteaua F, Ortiza AL (2016) Aqueous colloidal processing of near-net shape B4C–Ni cermet compacts. J Eur Ceram Soc 36:1915–1921

    Article  CAS  Google Scholar 

  10. Otsuki A, Bryant G (2015) Characterization of the interactions within fine particle mixtures in highly concentrated suspensions for advanced particle processing. Adv Colloid Interface Sci 226:37–43

    Article  PubMed  CAS  Google Scholar 

  11. Babick F, Hinze F, Ripperger S (2000) Dependence of ultrasonic attenuation on the material properties. Colloids Surf A 172:33–46

    Article  CAS  Google Scholar 

  12. Povey MJW (2013) Ultrasound particle sizing: a review. Particuology 11:135–147

    Article  Google Scholar 

  13. Shukla A, Prakash A, Rohani S (2010) Online measurement of particle size distribution during crystallization using ultrasonic spectroscopy. Chem Eng Sci 65:3072–3079

    Article  CAS  Google Scholar 

  14. Venkataramanib D, Smay JE, Aichele CP (2016) Transient stability of surfactant and solid stabilized water-in-oil emulsions. Colloids Surf A 490:84–90

    Article  CAS  Google Scholar 

  15. Dukhin AS, Goetz PJ (2001) New developments in acoustic and electroacoustic spectroscopy for characterizing concentrated dispersions. Colloids Surf A 192:267–306

    Article  CAS  Google Scholar 

  16. Challis RE, Povey MJW, Mather ML, Holmes AK (2005) Ultrasound techniques for characterizing colloidal dispersions. Rep Prog Phys 68:1541–1637

    Article  CAS  Google Scholar 

  17. Trulli MG, Sardella E, Palumbo F, Palazzo G, Giannossa LC, Mangone A, Comparelli R, Musso S, Favia P (2017) Towards highly stable aqueous dispersions of multi-walled carbon nanotubes: the effect of oxygen plasma functionalization. J Colloid Interface Sci 491:255–264

    Article  CAS  Google Scholar 

  18. Gumus OY, Ozkan S, Una HI (2016) A comparative study on electrokinetic properties of boronic acid derivative polymers in aqueous and nonaqueous media. Macromol Chem Phys 217:1411–1421

    Article  CAS  Google Scholar 

  19. Marín RRR, Babick F, Hillemann L (2017) Zeta potential measurements for non-spherical colloidal particles—practical issues of characterisation of interfacial properties of nanoparticles. Colloids Surf A 532:516–521

    Article  CAS  Google Scholar 

  20. Cruz RCD, Segadães AM, Oberacker R, Hoffmann MJ (2017) Double layer electrical conductivity as a stability criterion for concentrated colloidal suspensions. Colloids Surf A 520:9–16

    Article  CAS  Google Scholar 

  21. Lowke D, Gehlen C (2017) The zeta potential of cement and additions in cementitious suspensions with high solid fraction. Cem Concr Res 95:195–204

    Article  CAS  Google Scholar 

  22. Negra MD, Foghmoes SPV, Klemensø T (2016) Complementary analysis techniques applied on optimizing suspensions of yttria stabilized zirconia. Ceram Int 42:14443–14451

    Article  CAS  Google Scholar 

  23. Dukhin AS, Goetz PJ, Fang XH, Somasundaran P (2010) Monitoring nanoparticles in the presence of larger particles in liquids using acoustics and electron microscopy. J Colloid Interface Sci 342:18–25

    Article  PubMed  CAS  Google Scholar 

  24. Dukhin AS, Goetz PJ, Truesdail S (2001) Titration of concentrated dispersions using electroacoustic ζ-potential probe. Langmuir 17:964–968

    Article  CAS  Google Scholar 

  25. Ahualli S, Arroyo FJ, Delgado AV (2010) Consideration of polydispersity in the evaluation of the dynamic mobility of concentrated suspensions. J Colloid Interface Sci 343:350–358

    Article  PubMed  CAS  Google Scholar 

  26. Dukhin AS, Goetz PJ (1998) Characterization of aggregation phenomena by means of acoustic and electroacoustic spectroscopy. Colloids Surf A 144:49–58

    Article  CAS  Google Scholar 

  27. Dukhin AS, Goetz PJ (1999) Characterization of chemical polishing materials (monomodal and bimodal) by means of acoustic spectroscopy. Colloids Surf A 158:343–354

    Article  CAS  Google Scholar 

  28. Coghill PJ, Millen MJ, Sowerby BD (2002) On-line measurement of particle size in mineral slurries. Miner Eng 15:83–90

    Article  CAS  Google Scholar 

  29. Dukhin AS, Parlia S (2014) Measuring zeta potential of protein nano-particles using electroacoustics. Colloids Surf B 121:257–263

    Article  CAS  Google Scholar 

  30. Delgado AV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2005) Measurement and interpretation of electrokinetic phenomena. Pure Appl Chem 77:1753–1805

    Article  CAS  Google Scholar 

  31. Dukhin A, Goetz P (2005) Evolution of water-in-oil emulsion controlled by droplet-bulk ion exchange: acoustic, electroacoustic, conductivity and image analysis. Colloids Surf A 253:51–64

    Article  CAS  Google Scholar 

  32. Mäkelä JM, Koponen IK, Aalto P, Kulmala M (2000) One-year data of submicron size modes of tropospheric background aerosol in southern Finland. J Aerosol Sci 31:595–611

    Article  Google Scholar 

  33. Endo Y (2009) Estimate of confidence intervals for geometric mean diameter and geometric standard deviation of lognormal size distribution. Powder Technol 193:154–161

    Article  CAS  Google Scholar 

  34. Al-Lashi RS, Challis RE (2014) Uncertainties in ultrasonic particle sizing in solid-in-liquid suspensions. IEEE T Ultrason Ferro 61:1835–1845

    Article  Google Scholar 

  35. ISO 9276-5: 2005 Representation of results of particle size analysis -Part 5: Methods of calculations relating to particle size analyses using logarithmic normal probability distribution.

  36. Dukhin AS, Goetz PJ (2001) Acoustic and electroacoustic spectroscopy for characterizing concentrated dispersions and emulsion. Adv Colloid Interface Sci 92:73–132

    Article  PubMed  CAS  Google Scholar 

  37. Dukhin AS, Fluck D, Goetz PJ, Shilov VN, Dukhin SS (2007) Characterization of fractal particles using acoustics, electroacoustics, light scattering, image analysis, and conductivity. Langmuir 23:5338–5351

    Article  PubMed  CAS  Google Scholar 

  38. Barany S, Bohacs K, Chepurna I, Meszaros R (2016) Electrokinetic properties and stability of cerium dioxide suspensions. RSC Adv 6:669343

    Article  CAS  Google Scholar 

  39. Kim HM, Venkatesh RP, Kwon TY, Park JG (2012) Influence of anionic polyelectrolyte addition on ceria dispersion behavior for quartz chemical mechanical polishing. Colloids Surf A 411:122–128

    Article  CAS  Google Scholar 

  40. Xing R, Rankin SE (2013) Three stage multilayer formation kinetics during adsorption of an anionic fluorinated surfactant onto germanium: solution pH and salt effects. J Colloid Interface Sci 401:88–96

    Article  PubMed  CAS  Google Scholar 

  41. Kosmulski M (2014) Background-subtraction in electroacoustic studies. Colloids Surf A 460:104–107

    Article  CAS  Google Scholar 

  42. Liu CF, Min FF, Liu LY, Chen J, Du J (2018) Mechanism of hydrolyzable metal ions effect on the zeta potential of fine quartz particles. J Disper Sci Technol 39:298–304

    Article  CAS  Google Scholar 

  43. Eisermann C, Mallembakam MR, Damm C, Peukert W, Breitung-Faes S, Kwade A (2012) Polymeric stabilization of fused corundum during nanogrinding in stirred media mills. Powder Technol 217:315–324

    Article  CAS  Google Scholar 

  44. Shen CY, Wu L, Zhang SW, Ye HC, Li BG, Huang YF (2014) Heteroaggregation of microparticles with nanoparticles changes the chemical reversibility of the microparticles’ attachment to planar surfaces. J Colloid Interface Sci 421:103–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lotfizadeh S, Aljama H, Reilly D, Matsoukas T (2016) Formation of reversible clusters with controlled degree of aggregation. Langmuir 32:4862–4867

    Article  PubMed  CAS  Google Scholar 

  46. Tadros T (2011) Interparticle interactions in concentrated suspensions and their bulk (Rheological) properties. Adv Colloid Interface Sci 168:263–277

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the National Natural Science Foundation of China (Grant No 51905506), and Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilong Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Luo, Z., Yang, Q. et al. Dispersion and agglomeration behaviors of submicron ceria particles in concentrated slurries. Colloid Polym Sci 299, 1683–1694 (2021). https://doi.org/10.1007/s00396-021-04894-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04894-7

Keywords

Navigation