Skip to main content

pH-responsive pitted polymer particles with surface morphologies from cup shaped to multicavities

Abstract

Polymeric particles that combine pH responsiveness and anisotropic morphology are reported, based on cross-linked 2-(diethylamino)ethyl methacrylate (DEA) coated polystyrene (PS) particles, obtained via a seeded polymerization procedure. DEA coating results in a single cavity within the seed particles, providing a cup-shaped final morphology. Two hydrophilic monomers, 2-(dimethylamino)ethyl methacrylate (DMA) and allylamine (AAm), are also used to further functionalize the particle surfaces. Through controlled monomer ratios, four pitted particles with different chemical compositions are prepared: DEA, DEA/DMA (two different ratios), and DEA/AAm. Monomer composition precisely tunes the resulting particle morphology, with the ability to change from cup shaped to multicavity. The pH-dependent release properties of the pitted particles are investigated using Rhodamine 6G at pH 6.5 and 7.4. Analysis of drug release kinetics with the Korsmeyer-Peppas model shows the drug release mechanism varies depending on the pH as well as the polymer composition. The biocompatibility of particles is assessed via the MTT cell viability assay.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of data and materials

Data is available in the electronic supplementary material.

Code availability

Not applicable.

References

  1. Deirram N, Zhang C, Kermaniyan SS, Johnston APR, Such GK (2019) pH-responsive polymer nanoparticles for drug delivery. Macromol Rapid Commun 40:1800917. https://doi.org/10.1002/marc.201800917

    Article  CAS  Google Scholar 

  2. Wei ML, Gao YF, Li X, Serpe MJ (2017) Stimuli-responsive polymers and their applications. Polym Chem 8:127–143. https://doi.org/10.1039/C6PY01585A

    Article  CAS  Google Scholar 

  3. Keating JJ, Imbrogno J, Belfort G (2016) Polymer brushes for membrane separations: a review. ACS Appl Mater Inter 8:28383–28399. https://doi.org/10.1021/acsami.6b09068

    Article  CAS  Google Scholar 

  4. Skorjanc T, Shetty D, Olson MA, Trabolsi A (2019) Design strategies and redox-dependent applications of insoluble viologen-based covalent organic polymers. ACS Appl Mater Inter 11:6705–6716. https://doi.org/10.1021/acsami.8b20743

    Article  CAS  Google Scholar 

  5. Stuart MAC, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113. https://doi.org/10.1038/nmat2614

    Article  PubMed  CAS  Google Scholar 

  6. Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32:1205–1237. https://doi.org/10.1016/j.progpolymsci.2007.05.003

    Article  CAS  Google Scholar 

  7. Al-Ahmady Z, Kostarelos K (2016) Chemical components for the design of temperature-responsive vesicles as cancer therapeutics. Chem Rev 116:3883–3918. https://doi.org/10.1021/acs.chemrev.5b00578

    Article  PubMed  CAS  Google Scholar 

  8. Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42:7468–7483. https://doi.org/10.1039/c2cs35191a

    Article  PubMed  CAS  Google Scholar 

  9. Kwan JJ, Myers R, Coviello CM, Graham SM, Shah AR, Stride E, Carlisle RC, Coussios CC (2015) Ultrasound-propelled nanocups for drug delivery. Small 11:5305–5314. https://doi.org/10.1002/smll.201501322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mannaris C, Teo BM, Seth A, Bau L, Coussios C, Stride E (2018) Gas-stabilizing gold nanocones for acoustically mediated drug delivery. Adv Healthcare Mater 7:1800184. https://doi.org/10.1002/adhm.201800184

    Article  CAS  Google Scholar 

  11. Gulzar A, Gai S, Yang P, Li C, Ansaric MB, Lin V (2015) Stimuli-responsive drug delivery application of polymer and silica in biomedicine. J Mater Chem B 3:8599–8622. https://doi.org/10.1039/C5TB00757G

    Article  PubMed  CAS  Google Scholar 

  12. Ballauff M, Yan LB (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48:1815–1823. https://doi.org/10.1016/j.polymer.2007.02.004

    Article  CAS  Google Scholar 

  13. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  14. Qiao Y, Wan J, Zhou L, Ma W, Yang Y, Luo W, Yu Z, Wang H (2019) Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. WIREs Nanomed Nanobi 11:e1527. https://doi.org/10.1002/wnan.1527

    Article  CAS  Google Scholar 

  15. Yu B, Cong H, Peng Q, Gu C, Tang Q, Xu X, Tian C, Zhai F (2018) Current status and future developments in preparation and application of nonspherical polymer particles. Adv Colloid Interfac 256:126–151. https://doi.org/10.1016/j.cis.2018.04.010

    Article  CAS  Google Scholar 

  16. Ji X, Wang M, Ge X, Liu H (2013) Synthesis of anisotropic polymer/inorganic particles via asymmetric swelling–dissolving process. Langmuir 29:1010–1016. https://doi.org/10.1021/la304806d

    Article  PubMed  CAS  Google Scholar 

  17. Kraft DJ, Hilhorst J, Heinen MAP, Hoogenraad MJ, Luigjes B, Kegel WK (2011) Patchy polymer colloids with tunable anisotropy dimensions. J Phys Chem B 115:7175–7185. https://doi.org/10.1021/jp108760g

    Article  PubMed  CAS  Google Scholar 

  18. Kim JW, Larsen RJ, Weitz DA (2006) Synthesis of nonspherical colloidal particles with anisotropic properties. J Am Chem Soc 128:14374–14377. https://doi.org/10.1021/ja065032m

    Article  PubMed  CAS  Google Scholar 

  19. Chen WH, Tu F, Bradley LC, Lee D (2017) Shape-tunable synthesis of sub-micrometer lens-shaped particles via seeded emulsion polymerization. Chem Mater 29:2685–2688. https://doi.org/10.1021/acs.chemmater.7b00494

    Article  CAS  Google Scholar 

  20. Peng Q, Cong H, Yu B, Wei L, Mahmood K, Yuan H, Yang R, Zhang X, Wu Y (2018) Preparation of polymeric Janus microparticles with hierarchically porous structure and enhanced anisotropy. J Colloid Interf Sci 522:144–150. https://doi.org/10.1016/j.jcis.2018.03.066

    Article  CAS  Google Scholar 

  21. Ouchi T, Nakamura R, Suzuki T, Minami H (2019) Preparation of janus particles composed of hydrophobic and hydrophilic polymers. Ind Eng Chem Res 58:20996–21002. https://doi.org/10.1021/acs.iecr.9b01856

    Article  CAS  Google Scholar 

  22. Lu Y, Xiong H, Jiang XC, Xia YN, Prentiss M, Whitesides GM (2003) Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids. J Am Chem Soc 125:12724–12725. https://doi.org/10.1021/ja0373014

    Article  PubMed  CAS  Google Scholar 

  23. Loh XJ, Teo BM (2017) Soft, hard, and hybrid Janus structures: synthesis, self-assembly, and applications. In: Lin Z, Li B (ed). World Scientific Publ Co Pte Ltd, Singapore, Ch 4.

  24. Okubo M, Katsuta Y, Yamada A, Matsumoto T (1979) Control of the morphology in particles produced by seed-emulsion polymerization. Kobunshi Ronbunshu 36:459–464. https://doi.org/10.1295/koron.36.459

    Article  CAS  Google Scholar 

  25. Sheu HR, El-Aasser MS, Vanderhoff JW (1990) Phase separation in polystyrene latex interpenetrating polymer networks. J Polym Sci A Polym Chem 28:629–651. https://doi.org/10.1002/pola.1990.080280314

    Article  CAS  Google Scholar 

  26. Okubo M, Shiozaki M, Tsujihiro M, Tsukuda Y (1991) Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method. Colloid Polym Sci 269:222–226. https://doi.org/10.1007/BF00665495

    Article  CAS  Google Scholar 

  27. Yoon J, Lee KJ, Lahann J (2011) Multifunctional polymer particles with distinct compartments. J Mater Chem 21:8502–8510. https://doi.org/10.1039/C1JM10673B

    Article  CAS  Google Scholar 

  28. Okubo M, Minami H, Yamashita T (1996) Production of micron-sized monodispersed cross-linked polymer particles having hollow structure. Macromol Symp 101:509–516. https://doi.org/10.1002/masy.19961010157

    Article  CAS  Google Scholar 

  29. Okubo M, Takekoh R, Suzuki A (2002) Preparation of micron-sized, monodisperse poly(methyl methacrylate)/polystyrene composite particles having a large number of dents on their surfaces by seeded dispersion polymerization in the presence of decalin. Colloid Polym Sci 280:1057–1061. https://doi.org/10.1007/s00396-002-0661-8

    Article  CAS  Google Scholar 

  30. Okubo M, Minami H, Morikawa K (2003) Influence of shell strength on shape transformation of micron-sized, monodisperse, hollow polymer particles. Colloid Polym Sci 281:214–219. https://doi.org/10.1007/s00396-002-0716-x

    Article  CAS  Google Scholar 

  31. Okubo M, Minami H (1997) Formation mechanism of micron-sized monodispersed polymer particles having a hollow structure. Colloid Polym Sci 275:992–997. https://doi.org/10.1007/s003960050177

    Article  CAS  Google Scholar 

  32. Sacanna S, Korpics M, Rodriguez K, Colón-Meléndez L, Kim SH, Pine DJ, Yi GR (2013) Shaping colloids for self-assembly Nat Commun 4:1688. https://doi.org/10.1038/ncomms2694

    Article  PubMed  CAS  Google Scholar 

  33. Okubo M, Murakami Y, Fujiwara T (1996) Formation mechanism of anomalous “golf ball-like” composite polymer particles by seeded emulsion polymerization. Colloid Polym Sci 274:520–524. https://doi.org/10.1007/BF00655226

    Article  CAS  Google Scholar 

  34. Tian L, Zhao P, Li X, Wang S, Ali Z, Zhang B, Zhang H, Zhang Q (2016) Large-scale fabrication of polymer microcavities with adjustable openings and surface roughness regulated by the polarity of both seed surface and monomers. Macromol Rapid Commun 37:47–52. https://doi.org/10.1002/marc.201500449

    Article  PubMed  CAS  Google Scholar 

  35. Pei X, Zhai K, Liang X, Deng Y, Xu K, Tan Y, Yao X, Wang P (2018) Fabrication of shape-tunable macroparticles by seeded polymerization of styrene using non-cross-linked starch-based seed. J Colloid Interf Sci 512:600–608. https://doi.org/10.1016/j.jcis.2017.10.100

    Article  CAS  Google Scholar 

  36. Liu S, Weaver JVM, Save M, Armes SP (2002) Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles. Langmuir 18:8350–8357. https://doi.org/10.1021/la020496t

    Article  CAS  Google Scholar 

  37. Agarwal S, Zhang Y, Maji S, Greiner A (2012) PDMAEMA based gene delivery materials. Mater Today 15:388–393. https://doi.org/10.1016/S1369-7021(12)70165-7

    Article  CAS  Google Scholar 

  38. Gomez LM, Morales P, Cruz GJ, Olayo MG, Palacios C, Morales J, Olayo R (2009) Plasma copolymerization of ethylene glycol and allylamine. Macromol Symp 283–284:7–12. https://doi.org/10.1002/masy.200950902

    Article  CAS  Google Scholar 

  39. Zhang Y, Aigner A, Agarwal S (2013) Degradable and biocompatible poly(N, N-dimethylaminoethyl methacrylate-co-caprolactone)s as DNA transfection agents. Macromol Biosci 13:1267–1275. https://doi.org/10.1002/mabi.201300043

    Article  PubMed  CAS  Google Scholar 

  40. Pikabea A, Ramos J, Forcada J (2014) Production of cationic nanogels with potential use in controlled drug delivery. Part Part Syst Charact 31:101–109. https://doi.org/10.1002/ppsc.201300265

    Article  CAS  Google Scholar 

  41. Das T, Roy S, Ting S, Zhang L, Li Y, Yue CY, Hu X (2015) A green technique to prepare uniform amine capped multi-walled carbon nanotubes to fabricate high strength, protein resistant polymer nanocomposites. RSC Adv 5:15524–15533. https://doi.org/10.1039/C4RA11519H

    Article  CAS  Google Scholar 

  42. Tscharnuter WW (2001) Mobility measurements by phase analysis. Appl Opt 40:3995–4003. https://doi.org/10.1364/AO.40.003995

    Article  PubMed  CAS  Google Scholar 

  43. Hackley VA, Premachandran RS, Malghan SG, Schiller SB (1995) A standard reference material for the measurement of particle mobility by electrophoretic light scattering. Colloid Surf A 98:209–224. https://doi.org/10.1016/0927-7757(95)03085-R

    Article  CAS  Google Scholar 

  44. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35. https://doi.org/10.1016/0378-5173(83)90064-9

    Article  CAS  Google Scholar 

  45. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42. https://doi.org/10.1016/0168-3659(87)90035-6

    Article  CAS  Google Scholar 

  46. Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223

    CAS  Google Scholar 

  47. Higuchi T (1963) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149. https://doi.org/10.1002/jps.2600521210

    Article  PubMed  CAS  Google Scholar 

  48. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  PubMed  CAS  Google Scholar 

  49. Cong H, Wang J, Yu B, Tang J, Cui W (2013) Fabrication of monodisperse anisotropic silica hollow microspheres using polymeric cave particles as templates. J Colloid Interf Sci 411:41–46. https://doi.org/10.1016/j.jcis.2013.08.046

    Article  CAS  Google Scholar 

  50. Li B, Xu Y, Wang M, Ge X (2013) Morphological control of multihollow polymer latex particles through a controlled phase separation in the seeded emulsion polymerization. Langmuir 29:14787−14794. https://doi.org/10.1021/la403166q

  51. Baines FL, Billingham NC, Armes SP (1996) Synthesis and solution properties of water-soluble hydrophilic−hydrophobic block copolymers. Macromolecules 29:3416–3420. https://doi.org/10.1021/ma951699+

    Article  CAS  Google Scholar 

  52. Vonklitzing R, Mohwald H (1995) Proton concentration profile in ultrathin polyelectrolyte films. Langmuir 11:3554–3559. https://doi.org/10.1021/la00009a044

    Article  Google Scholar 

  53. Xie AF, Granick S (2002) Local electrostatics within a polyelectrolyte multilayer with embedded weak polyelectrolyte. Macromolecules 35:1805–1813. https://doi.org/10.1021/ma011293z

    Article  CAS  Google Scholar 

  54. Rmaile HH, Schlenoff JB (2002) “Internal pKa’s” in polyelectrolyte multilayers: coupling protons and salt. Langmuir 18:8263–8265. https://doi.org/10.1021/la025624s

    Article  CAS  Google Scholar 

  55. Kabanov V (2003) Fundamentals of polyelectrolyte complexes in solution and the bulk. In: Decher G, Schlenoff JB (ed). Wiley-VCH, Weinheim, 2003, Ch. 2.

  56. Burke SE, Barrett CJ (2003) Acid−base equilibria of weak polyelectrolytes in multilayer thin films. Langmuir 19:3297–3303. https://doi.org/10.1021/la026500i

    Article  CAS  Google Scholar 

  57. Choi J, Rubner MF (2005) Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 38:116–124. https://doi.org/10.1021/ma048596o

    Article  CAS  Google Scholar 

  58. Suh J, Paik HJ, Hwang BK (1994) Ionization of poly(ethylenimine) and poly(allylamine) at various pH’s. Bioorg Chem 22:318–327. https://doi.org/10.1006/bioo.1994.1025

    Article  CAS  Google Scholar 

  59. Fan JB, Huang C, Jiang L, Wang S (2013) Nanoporous microspheres: from controllable synthesis to healthcare applications, J Mater Chem B 1:2222–2235

  60. Zhu X, Vo C, Taylor M, Smith BR (2019) Non-spherical micro- and nanoparticles in nanomedicine. Mater Horiz 6:1094–1121. https://doi.org/10.1039/C8MH01527A

    Article  CAS  Google Scholar 

  61. Ramli RA (2017) Hollow polymer particles: a review. RSC Adv 7:52632–52650. https://doi.org/10.1039/c7ra10358a

    Article  CAS  Google Scholar 

  62. Shen S, Wu Y, Liu Y, Wu D (2017) High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomed 12:4085–4109. https://doi.org/10.2147/IJN.S132780

    Article  CAS  Google Scholar 

  63. Liu Y, Yang G, Jin S, Xu L, Zhao CX (2020) Development of high-drug-loading nanoparticles ChemPlusChem 85:2143–2157. https://doi.org/10.1002/cplu.202000496

    Article  PubMed  CAS  Google Scholar 

  64. Colombo P, Bettini R, Santi P, Peppas NA (2000) Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharm Sci Technology Today 3:198–204. https://doi.org/10.1016/S1461-5347(00)00269-8

    Article  CAS  Google Scholar 

  65. Bruschi ML (2015) Strategies to modify the drug release from pharmaceutical systems, mathematical models of drug release. Woodhead Publishing, Chapter 5:63–86. https://doi.org/10.1016/B978-0-08-100092-2.00005-9

    Article  Google Scholar 

  66. Verma M, Dwivedi PK, Saxena NS (2020) Hollow silica nanoparticles synthesized from core-shell nanoparticles as highly efficient adsorbent for methylene blue and its invitro release: mechanism and kinetics study. Colloids Surf A 587:124333. https://doi.org/10.1016/j.colsurfa.2019.124333

    Article  CAS  Google Scholar 

  67. Peppas NA, Sahlin JJ (1989) A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm 57:169–172. https://doi.org/10.1016/0378-5173(89)90306-2

    Article  CAS  Google Scholar 

  68. Goda T, Imaizumi Y, Hatano H, Matsumoto A, Ishihara K, Miyahara Y (2019) Translocation mechanisms of cell-penetrating polymers identified by induced proton dynamics. Langmuir 35:8167–8173. https://doi.org/10.1021/acs.langmuir.9b00856

    Article  PubMed  CAS  Google Scholar 

  69. Bashford CL, Alder G, Menestrina G, Micklem K, Murphy J, Pasternak C (1986) Membrane damage by hemolytic viruses, toxins, complement, and other cytotoxic agents. A common mechanism blocked by dival

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Dr. R.B.K. received support from the Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB-2219 Postdoctoral Research program.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: R. Bengü Karabacak, Rico F. Tabor, Boon M. Teo; methodology: R. Bengü Karabacak, Boon M. Teo, Shane P. Meaney; validation: R. Bengü Karabacak; software: Shane P. Meaney; formal analysis: R. Bengü Karabacak, Mark L. Vidallon, Zhen Zhen Lu, Shahinur Acter, Shane P. Meaney; investigation: R. Bengü Karabacak, Zhen Zhen Lu, Mark L. Vidallon; writing—original draft: R. Bengü Karabacak; writing—review and editing: R. Bengü Karabacak, Rico F. Tabor, Boon M. Teo; project administration: R. Bengü Karabacak, Rico F. Tabor, Boon M. Teo; resources: Rico F. Tabor, Boon M. Teo; supervision: Rico F. Tabor, Boon M. Teo.

Corresponding authors

Correspondence to Rukiye Bengü Karabacak or Boon M. Teo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 814 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karabacak, R., Vidallon, M.P., Meaney, S.P. et al. pH-responsive pitted polymer particles with surface morphologies from cup shaped to multicavities. Colloid Polym Sci 299, 1717–1728 (2021). https://doi.org/10.1007/s00396-021-04884-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04884-9

Keywords

  • Colloids
  • Drug delivery
  • Stimuli-responsive
  • Anisotropic particle
  • Cavity