Skip to main content
Log in

Boosting the pervaporation performance of PDMS membrane for 1-butanol by MAF-6

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

To meet the increasing requirements toward biobutanol, pervaporation membrane with high separation performance needs to be developed. In this work, a hydrophobic MAF-6 (RHO-[Zn(eim)2]) was synthesized and its adsorption properties for 1-butanol was systematically studied, which are supposed to benefit the separation performance of polydimethylsiloxane (PDMS) membrane. The hydrophobic MAF-6 particles were therefore doped into PDMS to fabricate mixed matrix membrane. The morphology, chemical structure, and other properties of particles and hybrid membrane were fully studied by SEM, PXRD, FT-IR, TGA, and BET. Results demonstrate that the hydrophobicity of PDMS membrane is improved with the water contact angle increasing from 112.7° to 118.1° after being doped with MAF-6, as well as enhanced adsorption ability toward 1-butanol. More importantly, when doping MAF-6 into PDMS layer, the enhancements of 23.30% and 41.93% are separately observed in the separation factor and total flux to separate 1.5 wt% 1-butanol solution, compared with the PDMS membrane. In addition, the heat energy consumption of pervaporation process is decreased from 4.27 to 3.71 kJ g−1 via the doping of MAF-6. Overall, this work confirms that the hydrophobic particle such as MAF-6 is not only conductive to enhance the separation performance of PDMS membrane but also helpful to decrease the energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. García V, Päkkilä J, Ojamo H et al (2011) Challenges in biobutanol production: How to improve the efficiency? Renewable Sustainable Energy Rev 15:964–980. https://doi.org/10.1016/j.rser.2010.11.008

    Article  CAS  Google Scholar 

  2. Green EM (2011) Fermentative production of butanol–the industrial perspective. Curr Opin Biotechnol 22:337–343. https://doi.org/10.1016/j.copbio.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  3. Liu G, Wei W, Jin W (2013) Pervaporation membranes for biobutanol production. ACS Sustainable Chem Eng 2:546–560. https://doi.org/10.1021/sc400372d

    Article  CAS  Google Scholar 

  4. Ong YK, Shi GM, Le NL et al (2016) Recent membrane development for pervaporation processes. Prog Polym Sci 57:1–31. https://doi.org/10.1016/j.progpolymsci.2016.02.003

    Article  CAS  Google Scholar 

  5. Vane LM (2005) A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 80:603–629. https://doi.org/10.1002/jctb.1265

    Article  CAS  Google Scholar 

  6. Li SY, Srivastava R, Parnas RS (2010) Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane. J Membr Sci 363:287–294. https://doi.org/10.1016/j.memsci.2010.07.042

    Article  CAS  Google Scholar 

  7. Ly Thi Phi T, Lee YJ, Bae HJ et al (2014) Pervaporative separation of butanol using a composite PDMS/PEI hollow fiber membrane. J Ind Eng Chem 20:2814–2818. https://doi.org/10.1016/j.jiec.2013.11.012

    Article  CAS  Google Scholar 

  8. Kang Q, Van der Bruggen B, Dewil R et al (2015) Hybrid operation of the bio-ethanol fermentation. Sep Purif Technol 149:322–330. https://doi.org/10.1016/j.seppur.2015.05.007

    Article  CAS  Google Scholar 

  9. Dong ZY, Liu GP, Liu SN et al (2014) High performance ceramic hollow fiber supported PDMS composite pervaporation membrane for bio-butanol recovery. J Membr Sci 450:38–47. https://doi.org/10.1016/j.memsci.2013.08.039

    Article  CAS  Google Scholar 

  10. Hu M, Wu Z, Sun L et al (2019) Improving pervaporation performance of PDMS membranes by interpenetrating polymer network for recovery of bio-butanol. Sep Purif Technol 228:115690. https://doi.org/10.1016/j.seppur.2019.115690

    Article  CAS  Google Scholar 

  11. Kujawska A, Knozowska K, Kujawa J et al (2020) Fabrication of PDMS based membranes with improved separation efficiency in hydrophobic pervaporation. Sep Purif Technol 234:116092. https://doi.org/10.1016/j.seppur.2019.116092

    Article  CAS  Google Scholar 

  12. Fouad EA, Feng X (2009) Pervaporative separation of n-butanol from dilute aqueous solutions using silicalite-filled poly(dimethyl siloxane) membranes. J Membr Sci 339:120–125. https://doi.org/10.1016/j.memsci.2009.04.038

    Article  CAS  Google Scholar 

  13. Ezeji T, Milne C, Price ND et al (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85:1697–1712. https://doi.org/10.1007/s00253-009-2390-0

    Article  CAS  PubMed  Google Scholar 

  14. Zhuang X, Chen X, Su Y et al (2015) Improved performance of PDMS/silicalite-1 pervaporation membranes via designing new silicalite-1 particles. J Membr Sci 493:37–45. https://doi.org/10.1016/j.memsci.2015.06.043

    Article  CAS  Google Scholar 

  15. Li Y, Wee LH, Martens JA et al (2014) ZIF-71 as a potential filler to prepare pervaporation membranes for bio-alcohol recovery. J Mater Chem A 2:10034–10040. https://doi.org/10.1039/c4ta00316k

    Article  CAS  Google Scholar 

  16. Yin H, Khosravi A, O’Connor L et al (2017) Effect of ZIF-71 particle size on free-standing ZIF-71/PDMS composite membrane performances for ethanol and 1-butanol removal from water through pervaporation. Ind Eng Chem Res 56:9167–9176. https://doi.org/10.1021/acs.iecr.7b01833

    Article  CAS  Google Scholar 

  17. Li G, Si Z, Cai D et al (2020) The in-situ synthesis of a high-flux ZIF-8/polydimethylsiloxane mixed matrix membrane for n-butanol pervaporation. Sep Purif Technol 236:116263. https://doi.org/10.1016/j.seppur.2019.116263

    Article  CAS  Google Scholar 

  18. Yin H, Lau CY, Rozowski M et al (2017) Free-standing ZIF-71/PDMS nanocomposite membranes for the recovery of ethanol and 1-butanol from water through pervaporation. J Membr Sci 529:286–292. https://doi.org/10.1016/j.memsci.2017.02.006

    Article  CAS  Google Scholar 

  19. Jayaramulu K, Geyer F, Schneemann A et al (2019) Hydrophobic metal-organic frameworks. Adv Mater 31:1900820. https://doi.org/10.1002/adma.201900820

    Article  CAS  Google Scholar 

  20. Antwi-Baah R, Liu H (2018) Recent hydrophobic metal-organic frameworks and their applications. Materials (Basel) 11. https://doi.org/10.3390/ma11112250

  21. Mukherjee S, Sharma S, Ghosh SK (2019) Hydrophobic metal-organic frameworks: Potential toward emerging applications. APL Mater 7:14. https://doi.org/10.1063/1.5091783

    Article  CAS  Google Scholar 

  22. He CT, Jiang L, Ye ZM et al (2015) Exceptional hydrophobicity of a large-pore metal-organic zeolite. J Am Chem Soc 137:7217–7223. https://doi.org/10.1021/jacs.5b03727

    Article  CAS  PubMed  Google Scholar 

  23. Gao C, Shi Q, Dong J (2016) Adsorptive separation performance of 1-butanol onto typical hydrophobic zeolitic imidazolate frameworks (ZIFs). Cryst Eng Comm 18:3842–3849. https://doi.org/10.1039/c6ce00249h

    Article  CAS  Google Scholar 

  24. Madero-Castro RM, Vicent-Luna JM, Calero S (2019) Adsorption of Light Alcohols in a High Hydrophobic Metal Azolate Framework. J Phys Chem C 123:23987–23994. https://doi.org/10.1021/acs.jpcc.9b05508

    Article  CAS  Google Scholar 

  25. Si Z, Li J, Ma L et al (2019) The ultrafast and continuous fabrication of a polydimethylsiloxane membrane by ultraviolet-induced polymerization. Angew Chem Int Ed 58:17175–17179. https://doi.org/10.1002/anie.201908386

    Article  CAS  Google Scholar 

  26. Li S, Li P, Cai D et al (2019) Boosting pervaporation performance by promoting organic permeability and simultaneously inhibiting water transport via blending PDMS with COF-300. J Membr Sci 579:141–150. https://doi.org/10.1016/j.memsci.2019.02.041

    Article  CAS  Google Scholar 

  27. Si Z, Li G, Wang Z et al (2020) A particle-driven, ultrafast-cured strategy for tuning the network cavity size of membranes with outstanding pervaporation performance. ACS Appli Mater Interfaces 12:31887–31895. https://doi.org/10.1021/acsami.0c05859

    Article  CAS  Google Scholar 

  28. Li S, Yang Y, Shan H et al (2019) Ultrafast and ultrahigh adsorption of furfural from aqueous solution via covalent organic framework-300. Sep Purif Technol 220:283–292. https://doi.org/10.1016/j.seppur.2019.03.072

    Article  CAS  Google Scholar 

  29. Dan H, Chen L, Xian Q et al (2019) Tailored synthesis of SBA-15 rods using different types of acids and its application in adsorption of uranium. Sep Purif Technol 210:491–496. https://doi.org/10.1016/j.seppur.2018.08.039

    Article  CAS  Google Scholar 

  30. Maziarz P, Matusik J, Leiviska T et al (2019) Toward highly effective and easily separable halloysite-containing adsorbents: The effect of iron oxide particles impregnation and new insight into As(V) removal mechanisms. Sep Purif Technol 210:390–401. https://doi.org/10.1016/j.seppur.2018.08.012

    Article  CAS  Google Scholar 

  31. Ruan XH, Xiao HY, Jiang XB et al (2019) Graphic synthesis method for multi-technique integration separation sequences of multi-input refinery gases. Sep Purif Technol 214:187–195. https://doi.org/10.1016/j.seppur.2018.04.082

    Article  CAS  Google Scholar 

  32. de Mattos NR, de Oliveira CR, Camargo LGB et al (2019) Azo dye adsorption on anthracite: A view of thermodynamics, kinetics and cosmotropic effects. Sep Purif Technol 209:806–814. https://doi.org/10.1016/j.seppur.2018.09.027

    Article  CAS  Google Scholar 

  33. Zhou XY, Zhou X (2014) The unit problem in the thermodynamic calculation of adsorption using the langmuir equation. Chem Eng Commun 201:1459–1467. https://doi.org/10.1080/00986445.2013.818541

    Article  CAS  Google Scholar 

  34. Bertolino V, Cavallaro G, Lazzara G et al (2017) Biopolymer-Targeted adsorption onto halloysite nanotubes in aqueous media. Langmuir 33:3317–3323. https://doi.org/10.1021/acs.langmuir.7b00600

    Article  CAS  PubMed  Google Scholar 

  35. Xue C, Liu F, Xu M et al (2016) Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption. Bioresour Technol 219:158–168. https://doi.org/10.1016/j.biortech.2016.07.111

    Article  CAS  PubMed  Google Scholar 

  36. Talbot J ( 1997) Analysis of adsorption selectivity in a one-dimensional model system. AIChE J 43:2471–2478. https://doi.org/10.1002/aic.690431010

  37. Liu G, Jiang Z, Cao K et al (2017) Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. J Membr Sci 523:185–196. https://doi.org/10.1016/j.memsci.2016.09.064

    Article  CAS  Google Scholar 

  38. Li S, Li P, Si Z et al (2019) An efficient method allowing for continuous preparation of PDMS/PVDF composite membrane. AIChE J 65:16710. https://doi.org/10.1002/aic.16710

    Article  CAS  Google Scholar 

  39. Baker RW, Wijmans JG, Huang Y (2010) Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data. J Membr Sci 348:346–352. https://doi.org/10.1016/j.memsci.2009.11.022

    Article  CAS  Google Scholar 

  40. Huang RYM, Moon GY, Pal R (2002) Ethylene propylene diene monomer (EPDM) membranes for the pervaporation separation of aroma compound from water. Ind Eng Chem Res 41:531–537. https://doi.org/10.1021/ie010246s

    Article  CAS  Google Scholar 

  41. Sander U, Soukup P (1988) Design and operation of a pervaporation plant for ethanol dehydration. J Membr Sci 36:463–475. https://doi.org/10.1016/0376-7388(88)80036-X

    Article  CAS  Google Scholar 

  42. Huang XC, Lin YY, Zhang JP et al (2006) Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed 45:1557–1559. https://doi.org/10.1002/anie.200503778

    Article  CAS  Google Scholar 

  43. Wang N, Shi G, Gao J et al (2015) MCM-41@ ZIF-8/PDMS hybrid membranes with micro-and nanoscaled hierarchical structure for alcohol permselective pervaporation. Sep Purif Technol 153:146–155. https://doi.org/10.1016/j.seppur.2015.09.004

    Article  CAS  Google Scholar 

  44. Jesionowski T, Żurawska J, Krysztafkiewicz A et al (2003) Physicochemical and morphological properties of hydrated silicas precipitated following alkoxysilane surface modification. Appl Surf Sci 205:212–224. https://doi.org/10.1016/S0169-4332(02)01090-5

    Article  CAS  Google Scholar 

  45. Kulkarni SA, Ogale SB, Vijayamohanan KP et al (2008) Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers. J Colloid Interf Sci 318:372–379. https://doi.org/10.1016/j.jcis.2007.11.012

    Article  CAS  Google Scholar 

  46. Hu Y, Kazemian H, Rohani S et al (2011) In situ high pressure study of ZIF-8 by FTIR spectroscopy. ChemComm 47:12694–12696. https://doi.org/10.1039/c1cc15525c

    Article  CAS  Google Scholar 

  47. Jasiński R, Ziółkowska M, Demchuk M et al (2014) Regio-and stereoselectivity of polar [2+3] cycloaddition reactions between (Z)-C-(3, 4, 5-trimethoxyphenyl)-N-methylnitrone and selected (E)-2-substituted nitroethenes. Cent Eur J Chem 12:586–593. https://doi.org/10.2478/s11532-014-0518-2

    Article  CAS  Google Scholar 

  48. Mansour AK, Eid MM, Khalil NSJM (2003) Synthesis and reactions of some new heterocyclic carbohydrazides and related compounds as potential anticancer agents. Molecules 8:744–755. https://doi.org/10.3390/81000744

    Article  CAS  PubMed Central  Google Scholar 

  49. She M, Hwang ST (2006) Effects of concentration, temperature, and coupling on pervaporation of dilute flavor organics. J Membr Sci 271:16–28. https://doi.org/10.1016/j.memsci.2005.07.005

    Article  CAS  Google Scholar 

  50. Jyoti G, Keshav A, Anandkumar J (2015) Review on pervaporation: theory, membrane performance, and application to intensification of esterification reaction. J Eng https://doi.org/10.1155/2015/927068

  51. Jiang JQ, Yang CX, Yan XP (2013) Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution. ACS Appl Mater Inter 5:9837–9842. https://doi.org/10.1021/am403079n

    Article  CAS  Google Scholar 

  52. Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris. Process Biochem 38:89–99. https://doi.org/10.1016/S0032-9592(02)00051-1

    Article  CAS  Google Scholar 

  53. Liu Y, Liu Y (2008) Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol 61:229–242. https://doi.org/10.1016/j.seppur.2007.10.002

    Article  CAS  Google Scholar 

  54. Ocampo-Perez R, Leyva-Ramos R, Mendoza-Barron J et al (2011) Adsorption rate of phenol from aqueous solution onto organobentonite: Surface diffusion and kinetic models. J Colloid Interf Sci 364:195–204. https://doi.org/10.1016/j.jcis.2011.08.032

    Article  CAS  Google Scholar 

  55. Lu GC, Hao J, Liu L et al (2011) The adsorption of phenol by lignite activated carbon. Chinese J Chem Eng 19:380–385. https://doi.org/10.1016/S1004-9541(09)60224-X

    Article  CAS  Google Scholar 

  56. Bell MS, Shahraz A, Fichthorn KA et al (2015) Effects of hierarchical surface roughness on droplet contact angle. Langmuir 31:6752–6762. https://doi.org/10.1021/acs.langmuir.5b01051

    Article  CAS  PubMed  Google Scholar 

  57. Naik PV, Wee LH, Meledina M et al (2016) PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation. J Mater Chem A 4:12790–12798. https://doi.org/10.1039/C6TA04700A

    Article  CAS  Google Scholar 

  58. Zhan X, Li JD, Fan C et al (2010) Pervaporation separation of ethanol/water mixtures with chlorosilane modified silicalite-1/PDMS hybrid membranes. Chin J Polym Sci 28:625–635. https://doi.org/10.1007/s10118-010-9136-4

    Article  CAS  Google Scholar 

  59. Qin F, Li S, Qin P et al (2014) A PDMS membrane with high pervaporation performance for the separation of furfural and its potential in industrial application. Green Chem 16:1262–1273. https://doi.org/10.1039/c3gc41867g

    Article  CAS  Google Scholar 

  60. Cheng X, Pan F, Wang M et al (2017) Hybrid membranes for pervaporation separations. J Membr Sci 541:329–346. https://doi.org/10.1016/j.memsci.2017.07.009

    Article  CAS  Google Scholar 

  61. Naik PV, Kerkhofs S, Martens JA et al (2016) PDMS mixed matrix membranes containing hollow silicalite sphere for ethanol/water separation by pervaporation. J Membr Sci 502:48–56. https://doi.org/10.1016/j.memsci.2015.12.028

    Article  CAS  Google Scholar 

  62. Zhuang X, Chen X, Su Y et al (2016) Surface modification of silicalite-1 with alkoxysilanes to improve the performance of PDMS/silicalite-1 pervaporation membranes: preparation, characterization and modeling. J Membr Sci 499:386–395. https://doi.org/10.1016/j.memsci.2015.10.018

    Article  CAS  Google Scholar 

  63. Xue G, Shi B (2018) Performance of various Si/Al ratios of ZSM-5-filled polydimethylsiloxane/polyethersulfone membrane in butanol recovery by pervaporation. Adv Polym Tech 37:3095–3105. https://doi.org/10.1002/adv.22080

    Article  CAS  Google Scholar 

  64. Wang X, Chen J, Fang M et al (2016) ZIF-7/PDMS mixed matrix membranes for pervaporation recovery of butanol from aqueous solution. Sep Purif Technol 163:39–47. https://doi.org/10.1016/j.seppur.2016.02.040

    Article  CAS  Google Scholar 

  65. Liu YL, Su YH, Lee KR et al (2005) Crosslinked organic–inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol–water mixtures with a long-term stability. J Membr Sci 251:233–238. https://doi.org/10.1016/j.memsci.2004.12.003

    Article  CAS  Google Scholar 

  66. Gao L, Alberto M, Gorgojo P et al (2017) High-flux PIM-1/PVDF thin film composite membranes for 1-butanol/water pervaporation. J Membr Sci 529:207–214. https://doi.org/10.1016/j.memsci.2017.02.008

    Article  CAS  Google Scholar 

  67. Liu GP, Hung WS, Shen J et al (2015) Mixed matrix membranes with molecular-interaction-driven tunable free volumes for efficient bio-fuel recovery. J Mater Chem A 3:4510–4521. https://doi.org/10.1039/c4ta05881j

    Article  CAS  Google Scholar 

  68. Zhou H, Su Y, Chen X et al (2011) Separation of acetone, butanol and ethanol (ABE) from dilute aqueous solutions by silicalite-1/PDMS hybrid pervaporation membranes. Sep Purif Technol 79:375–384. https://doi.org/10.1016/j.seppur.2011.03.026

    Article  CAS  Google Scholar 

  69. Xue C, Yang D, Du G et al (2015) Evaluation of hydrophobic micro-zeolite-mixed matrix membrane and integrated with acetone–butanol–ethanol fermentation for enhanced butanol production. Biotechnol Biofuels 8:1–9

    Article  Google Scholar 

  70. Vankelecom IF, Depre D, De Beukelaer S et al (1995) Influence of zeolites in PDMS membranes: pervaporation of water/alcohol mixtures. J Phys Chem 99:13193–13197

    Article  CAS  Google Scholar 

Download references

Funding

The work was granted by the National Key Research and Development Program of China (Grant No. 2018YFB1501703), the National Natural Science Foundation of China (Grant Nos. 21978016 and 22078018), and the China Postdoctoral Science Foundation (Grant No. 2020M670114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peiyong Qin, Shufeng Li or Zhihao Si.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 621 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, P., Ren, C., Shan, H. et al. Boosting the pervaporation performance of PDMS membrane for 1-butanol by MAF-6. Colloid Polym Sci 299, 1459–1468 (2021). https://doi.org/10.1007/s00396-021-04873-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04873-y

Keywords

Navigation