Skip to main content
Log in

Study on the influence of crosslinking density and free polysiloxan chain length on oxygen permeability and hydrophilicity of multicomponent silicone hydrogels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

To investigate the influence of crosslinking density and free polysiloxane chain length on oxygen permeability and hydrophilicity of multicomponent silicone hydrogels, two kinds of silicone macromonomers, single methacrylate terminated silicone macromonomers (PDMS-1) and double methacrylate terminated silicone macromonomers (PDMS-2), were synthetized, respectively. Then, a series of multicomponent silicone hydrogels with different crosslinking densities and free polysiloxane chain lengths were prepared by copolymerization of obtained silicone macromonomers, silicone monomer tris(trimethylsiloxy)-3-methacryloxpropylsilane (TRIS), and hydrophilic monomers. The oxygen permeability coefficient (Dk), equilibrium water content (EWC), light transmittance, and mechanical properties of silicone hydrogels were characterized. The results indicated that the longer free polysiloxane chain was beneficial to the increase of Dk values and EWC of silicone hydrogels. With the increase of crosslinking density, the Dk values and EWC of the silicone hydrogels decreased. This work provided a new idea for the preparation of high-permeability silicone hydrogels in the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baran A, Zaleski T, Kulikowski E, Wieczorek J (2015) Hydrophysical and biological properties of sandy substrata enriched with hydrogel. Pol J Environ Stud 24(6):2355–2362

    Article  Google Scholar 

  2. dos Santos JF, Alvarez-Lorenzo C, Silva M, Balsa L, Couceiro J, Torres-Labandeira JJ, Concheiro A (2009) Soft contact lenses functionalized with pendant cyclodextrins for controlled drug delivery. Biomaterials 30(7):1348–1355

    Article  Google Scholar 

  3. Rico-Sergado L, Perez-Canales JL, Perez-Santonja JJ, Ciguenza-Sancho S (2015) Severe keratomalacia after 12 months of continuous hydrogel contact lens wear in a psychiatric patient. Cont Lens Anterior Eye 38(2):138–141

    Article  Google Scholar 

  4. Hill RM (2000) Dk/t: closed eye equivalents. Int Cont Lens Clinic 27(3):101–102

    Article  Google Scholar 

  5. Jalil A, Uludag H (2004) Hydrogels of thermoreversible comb-polymers exhibit increased resistance for dissolution. Materialwiss Werkstofftech 35(12):972–979

    Article  CAS  Google Scholar 

  6. Cabral JD, Roxburgh M, Shi Z, Liu L, McConnell M, Williams G, Evans N, Hanton LR, Simpson J, Moratti SC, Robinson BH, Wormald PJ, Robinson S (2014) Synthesis, physiochemical characterization, and biocompatibility of a chitosan/dextran-based hydrogel for postsurgical adhesion prevention. J Mater Sci Mater Med 25(12):2743–2756

    Article  CAS  Google Scholar 

  7. Hu X, Gong X (2016) A new route to fabricate biocompatible hydrogels with controlled drug delivery behavior. J Colloid Interface Sci 470:62–70

    Article  CAS  Google Scholar 

  8. Busatto CA, Labie H, Lapeyre V, Auzely-Velty R, Perro A, Casis N, Luna J, Estenoz DA, Ravaine V (2017) Oil-in-microgel strategy for enzymatic-triggered release of hydrophobic drugs. J Colloid Interface Sci 493:356–364

    Article  CAS  Google Scholar 

  9. Liu L, Chakma A, Feng X (2008) Gas permeation through water-swollen hydrogel membranes. J Membr Sci 310(1–2):66–75

    Article  CAS  Google Scholar 

  10. Liu Y, Yu S, Wu H, Li Y, Wang S, Tian Z, Jiang Z (2014) High permeability hydrogel membranes of chitosan/poly ether-block-amide blends for CO2 separation. J Membr Sci 469:198–208

    Article  CAS  Google Scholar 

  11. Yin L, Ding J, Zhang J, He C, Tang C, Yin C (2010) Polymer integrity related absorption mechanism of superporous hydrogel containing interpenetrating polymer networks for oral delivery of insulin. Biomaterials 31(12):3347–3356

    Article  CAS  Google Scholar 

  12. Morgan PB, Efron N (1998) The oxygen performance of contemporary hydrogel contact lenses. Cont Lens Anterior Eye 21(1):2–6

    Article  Google Scholar 

  13. Zhang X, Wang L, Tao H, Sun Y, Yang H, Lin B (2019) The influences of poly (ethylene glycol) chain length on hydrophilicity, oxygen permeability, and mechanical properties of multicomponent silicone hydrogels. Colloid Polym Sci 297(9):1233–1243

    Article  CAS  Google Scholar 

  14. Young MD, Benjamin WJ (2003) Calibrated oxygen permeability of 35 conventional hydrogel materials and correlation with water content. Eye Cont Lens 29(2):126–133

    Article  Google Scholar 

  15. Holden BA, Mertz GW (1984) Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses. Invest Ophthalmol Vis Sci 25(10):1161–1167

    CAS  PubMed  Google Scholar 

  16. Dorishetty P, Dutta NK, Choudhury NR (2020) Bioprintable tough hydrogels for tissue engineering applications. Adv Colloid Interface Sci 281:102163

  17. Balakrishnan B, Banerjee R (2011) Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev 11(8):4453–4474

    Article  Google Scholar 

  18. Radhakrishnan J, Subramanian A, Krishnan U, Sethuraman S (2017) Injectable and 3D bioprinted polysaccharide hydrogels: from cartilage to osteochondral tissue engineering. Biomacromol 18(1):1–26

    Article  CAS  Google Scholar 

  19. Lin B, Megley K, Viswanathan N, Krogstad D, Drews L, Kade M, Qian Y, Tirrell MV (2012) pH-responsive branched peptide amphiphile hydrogel designed for applications in regenerative medicine with potential as injectable tissue scaffolds. J Mater Chem 22(37):19447–19454

    Article  CAS  Google Scholar 

  20. Jiang Y, Hou Y, Fang J, Liu W, Zhao Y, Huang T, Cui J, Yang Y, Zhou Z (2019) Preparation and characterization of PVA/SA/HA composite hydrogels for wound dressing. Int J Polym Anal Charact 24(2):132–141

    Article  CAS  Google Scholar 

  21. Gupta A, Kowalczuk M, Heaselgrave W, Britland ST, Martin C, Radecka I (2019) The production and application of hydrogels for wound management: a review. Eur Polym J 111:134–151

    Article  CAS  Google Scholar 

  22. Rudy A, Kuliasha C, Uruena J, Rex J, Schulze KD, Stewart D, Angelini T, Sawyer WG, Perry SS (2017) Lubricous hydrogel surface coatings on polydimethylsiloxane (PDMS). Tribol Lett 65(1):3

    Article  Google Scholar 

  23. Nicolson PC, Vogt J (2001) Soft contact lens polymers: an evolution. Biomaterials 22(24):3273–3283

    Article  CAS  Google Scholar 

  24. Lamberti A, Marasso SL, Cocuzza M (2014) PDMS membranes with tunable gas permeability for microfluidic applications. RSC Adv 4(106):61415–61419

    Article  CAS  Google Scholar 

  25. Compan V, Lopez-Alemany A, Riande E, Refojo MF (2004) Biological oxygen apparent transmissibility of hydrogel contact lenses with and without organosilicon moieties. Biomaterials 25(2):359–365

    Article  CAS  Google Scholar 

  26. Lin CH, Yeh YH, Lin WC, Yang MC (2014) Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids Surf., B 123:986–994

  27. Lai Y-C (1995) Novel polyurethane–silicone hydrogels. J Appl Polym Sci 56(3):301–310

    Article  CAS  Google Scholar 

  28. Yokota M, Ajiro H, Akashi M (2013) Effect of copolymerizing fluorine-bearing monomers on the relationship among internal structure, gas permeability, and transparency in copolymer networks composed of methacrylates and siloxane macromers. J Appl Polym Sci 127(1):535–543

    Article  CAS  Google Scholar 

  29. Tao H, Zhang X, Sun Y, Yang H, Lin B (2016) The influence of molecular weight of siloxane macromere on phase separation morphology, oxygen permeability, and mechanical properties in multicomponent silicone hydrogels. Colloid Polym Sci 295(1):205–213

    Article  Google Scholar 

  30. Zhao Z, Xie H, An S, Jiang Y (2014) The relationship between oxygen permeability and phase separation morphology of the multicomponent silicone hydrogels. J Phys Chem B 118(50):14640–14647

    Article  CAS  Google Scholar 

  31. Sugimoto H, Nishino G, Tsuzuki N, Daimatsu K, Inomata K, Nakanishi E (2011) Preparation of high oxygen permeable transparent hybrid copolymers with silicone macro-monomers. Colloid Polym Sci 290(2):173–181

    Article  Google Scholar 

  32. Pozuelo J, Compañ V, González-Méijome JM, González M, Mollá S (2014) Oxygen and ionic transport in hydrogel and silicone-hydrogel contact lens materials: an experimental and theoretical study. J Membr Sci 452:62–72

    Article  CAS  Google Scholar 

  33. Peng S, Guo Q, Hughes TC, Hartley PG (2011) In situ synchrotron SAXS study of polymerizable microemulsions. Macromole 44(8):3007–3015

    Article  CAS  Google Scholar 

  34. Nagai K, Masuda T, Nakagawa T, Freeman BD, Pinnau I (2001) Poly 1-(trimethylsilyl)-1-propyne and related polymers: synthesis, properties and functions. Prog Polym Sci 26(5):721–798

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21374016, 21304018), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueqin Zhang or Baoping Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 315 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Zhang, X., Sun, Y. et al. Study on the influence of crosslinking density and free polysiloxan chain length on oxygen permeability and hydrophilicity of multicomponent silicone hydrogels. Colloid Polym Sci 299, 1327–1335 (2021). https://doi.org/10.1007/s00396-021-04850-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04850-5

Keywords

Navigation