Skip to main content
Log in

Non-destructive depth-dependent morphological characterization of ferroelectric:semiconducting polymer blend films

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript


Herein, we investigate the technologically relevant blend of the ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene), P(VDF-co-TrFE), with the semiconducting polymer poly(3-hexylthiophene), P3HT, by means of a combination of scanning probe microscopy techniques, namely atomic force microscopy, conductive force microscopy, kelvin probe force microscopy, and piezoresponse force microscopy. This combination proves to be a powerful tool for the non-destructive morphological reconstruction of multi-functional nano-structured thin films, as those under study. Each modality allows discerning the two blend constituents based on their functionality, and, additionally, probes layers of different thickness with respect to the film surface. The depth-dependent information that is collected allows a qualitative reconstruction of the blend’s composition and morphology both in-plane and out-of-plane of the film. We demonstrate that P3HT exhibits the tendency to reside the film surface at an almost constant composition of 15%, independent of blend’s composition. Increasing the P3HT content in the blend results in the segregation of P3HT at the upper layers of the films, partially buried below a P(VDF-co-TrFE) superficial layer. The depletion of P3HT from the substrate/film interface is reflected by the poor existence of conducting pathways that connect the top and bottom planes of the film. The three-dimensional morphology of this polymer blend that is revealed thanks to the employed techniques deviates substantially from the ideal morphology proposed for the efficient performance of the targeted memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable


  1. Asadi K, de Leeuw DM, de Boer B, Blom PWM (2008) Organic non-volatile memories from ferroelectric phase-separated blends. Nat Mater 7(7):547–550.

    Article  CAS  PubMed  Google Scholar 

  2. Asadi K, de Boer TG, Blom PWM, de Leeuw DM (2009) Tunable injection barrier in organic resistive switches based on phase-separated ferroelectric–semiconductor blends. Adv Funct Mater 19(19):3173–3178.

    Article  CAS  Google Scholar 

  3. Scott JF (2000) Ferroelectric memories today. Ferroelectrics 236(1):247–258.

    Article  CAS  Google Scholar 

  4. Asadi K (2020) Resistance switching in two-terminal ferroelectric-semiconductor lateral heterostructures. Appl Phys Rev 7(2):021307.

    Article  CAS  Google Scholar 

  5. McNeill CR, Asadi K, Watts B, Blom PWM, de Leeuw DM (2010) Structure of phase-separated ferroelectric/semiconducting polymer blends for organic non-volatile memories. Small 6(4):508–512.

    Article  CAS  PubMed  Google Scholar 

  6. Asadi K, Wondergem HJ, Moghaddam RS, McNeill CR, Stingelin N, Noheda B, Blom PWM, de Leeuw DM (2011) Spinodal Decomposition of blends of semiconducting and ferroelectric polymers. Adv Funct Mater 21(10):1887–1894.

    Article  CAS  Google Scholar 

  7. Ghittorelli M, Lenz T, Sharifi Dehsari H, Zhao D, Asadi K, Blom PWM, Kovács-Vajna ZM, de Leeuw DM, Torricelli F (2017) Quantum tunnelling and charge accumulation in organic ferroelectric memory diodes. Nat Commun 8(1):15741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kemerink M, Asadi K, Blom PWM, de Leeuw DM (2012) The operational mechanism of ferroelectric-driven organic resistive switches. Org Electron 13(1):147–152.

    Article  CAS  Google Scholar 

  9. Kang SJ, Park YJ, Bae I, Kim KJ, Kim H-C, Bauer S, Thomas EL, Park C (2009) Printable ferroelectric PVDF/PMMA blend films with ultralow roughness for low voltage non-volatile polymer memory. Adv Funct Mater 19(17):2812–2818.

    Article  CAS  Google Scholar 

  10. Li M, Stingelin N, Michels JJ, Spijkman M-J, Asadi K, Beerends R, Biscarini F, Blom PWM, de Leeuw DM (2012) Processing and low voltage switching of organic ferroelectric phase-separated bistable diodes. Adv Funct Mater 22(13):2750–2757.

    Article  CAS  Google Scholar 

  11. Khan MA, Bhansali US, Almadhoun MN, Odeh IN, Cha D, Alshareef HN (2014) High-performance ferroelectric memory based on phase-separated films of polymer blends. Adv Funct Mater 24(10):1372–1381.

    Article  CAS  Google Scholar 

  12. Costa C, Nunes-Pereira J, Rodrigues LC, Silva M, Gomez Ribelles JL, Lanceros-Méndez S (2013) Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators in lithium-ion applications. Electrochim Acta 88:473–476.

    Article  CAS  Google Scholar 

  13. Khikhlovskyi V, Wang R, van Breemen AJJM, Gelinck GH, Janssen RAJ, Kemerink M (2014) Nanoscale organic ferroelectric resistive switches. J Phys Chem C 118(6):3305–3312.

    Article  CAS  Google Scholar 

  14. Khikhlovskyi V, van Breemen AJJM, Michels JJ, Janssen RAJ, Gelinck GH, Kemerink M (2015) 3D-morphology reconstruction of nanoscale phase-separation in polymer memory blends. J Polym Sci B Polym Phys 53(17):1231–1237.

    Article  CAS  Google Scholar 

  15. Su GM, Lim E, Kramer EJ, Chabinyc ML (2015) Phase separated morphology of ferroelectric–semiconductor polymer blends probed by synchrotron x-ray methods. Macromolecules 48(16):5861–5867.

    Article  CAS  Google Scholar 

  16. Pandey SS, Takashima W, Nagamatsu S, Endo T, Rikukawa M, Kaneto K (2000) Regioregularity vs regiorandomness: effect on photocarrier transport in poly(3-hexylthiophene). Jpn J Appl Phys 39 (Part 2, No. 2A):L94-L97.

  17. Spampinato N, Maiz J, Portale G, Maglione M, Hadziioannou G, Pavlopoulou E (2018) Enhancing the ferroelectric performance of P(VDF-co-TrFE) through modulation of crystallinity and polymorphism. Polymer 149:66–72.

    Article  CAS  Google Scholar 

  18. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13(8):1741–1747.

    Article  CAS  Google Scholar 

  19. Matavž A, Bobnar V, Malič B (2017) Tailoring ink–substrate interactions via thin polymeric layers for high-resolution printing. Langmuir 33(43):11893–11900.

    Article  PubMed  Google Scholar 

  20. Lacroix C (2014) Etude des mélanges de polymères semi-conducteur / ferroélectrique en films minces : application en électronique organique

  21. Yuan Y, Reece TJ, Sharma P, Poddar S, Ducharme S, Gruverman A, Yang Y, Huang J (2011) Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat Mater 10(4):296–302.

    Article  CAS  PubMed  Google Scholar 

  22. Yang B, Yuan Y, Sharma P, Poddar S, Korlacki R, Ducharme S, Gruverman A, Saraf R, Huang J (2012) Tuning the energy level offset between donor and acceptor with ferroelectric dipole layers for increased efficiency in bilayer organic photovoltaic cells. Adv Mater 24(11):1455–1460.

    Article  CAS  PubMed  Google Scholar 

  23. Gutiérrez-Fernández E, Rebollar E, Cui J, Ezquerra TA, Nogales A (2019) Morphology and ferroelectric properties of semiconducting/ferroelectric polymer bilayers. Macromolecules 52(19):7396–7402.

    Article  CAS  Google Scholar 

  24. Mehta RR, Silverman BD, Jacobs JT (1973) Depolarization fields in thin ferroelectric films. J Appl Phys 44(8):3379–3385.

    Article  CAS  Google Scholar 

  25. Batra IP, Wurfel P, Silverman BD (1973) Phase transition, stability, and depolarization field in ferroelectric thin films. Phys Rev B 8(7):3257–3265.

    Article  CAS  Google Scholar 

  26. Melitz W, Shen J, Kummel AC, Lee S (2011) Kelvin probe force microscopy and its application. Surf Sci Rep 66(1):1–27.

    Article  CAS  Google Scholar 

  27. Liscio A, Palermo V, Fenwick O, Braun S, Müllen K, Fahlman M, Cacialli F, Samorí P (2011) Local surface potential of π-conjugated nanostructures by kelvin probe force microscopy: effect of the sampling depth. Small 7(5):634–639.

    Article  CAS  PubMed  Google Scholar 

  28. Brinkmann M (2011) Structure and morphology control in thin films of regioregular poly(3-hexylthiophene). J Polym Sci Part B: Polym Phys 49(17):1218–1233.

  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heriot SY, Jones RAL (2005) An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films. Nat Mater 4(10):782–786.

    Article  CAS  PubMed  Google Scholar 

  31. Mokarian-Tabari P, Geoghegan M, Howse JR, Heriot SY, Thompson RL, Jones RAL (2010) Quantitative evaluation of evaporation rate during spin-coating of polymer blend films: control of film structure through defined-atmosphere solvent-casting. Eur Phys J E Soft Matter 33(4):283–289.

    Article  CAS  PubMed  Google Scholar 

  32. Martínez-Tong DE, Rodríguez-Rodríguez Á, Nogales A, García-Gutiérrez M-C, Pérez-Murano F, Llobet J, Ezquerra TA, Rebollar E (2015) Laser fabrication of polymer ferroelectric nanostructures for nonvolatile organic memory devices. ACS Appl Mater Interfaces 7(35):19611–19618.

    Article  CAS  PubMed  Google Scholar 

  33. Nougaret L, Kassa HG, Cai R, Patois T, Nysten B, van Breemen AJJM, Gelinck GH, de Leeuw DM, Marrani A, Hu Z, Jonas AM (2014) Nanoscale design of multifunctional organic layers for low-power high-density memory devices. ACS Nano 8(4):3498–3505.

    Article  CAS  PubMed  Google Scholar 

Download references


This work was performed within the framework of the Labex AMADEus program (ANR-10-LABEX-0042-AMADEUS). The ferroelectric measurements have been conducted at the ELORPrintTec Platform (ANR-10-EQPX-28-01/Equipex ELORPrintTec).


The authors acknowledge receiving funding from the Labex AMADEus (ANR-10-LABEX-0042-AMADEUS) and the French state Initiative d’Excellence IdEx (ANR-10-IDEX-003-02). Financial support from the HOMERIC Industrial Chair (Arkema/ANR) with the grant agreement no AC-2013-365 is also acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. Pavlopoulou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spampinato, N., Pecastaings, G., Maglione, M. et al. Non-destructive depth-dependent morphological characterization of ferroelectric:semiconducting polymer blend films. Colloid Polym Sci 299, 551–560 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: