Skip to main content
Log in

One-step approach of dual-responsive prodrug nanogels via Diels-Alder reaction for drug delivery

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A novel strategy for the preparation of dual-responsive prodrug nanogels was proposed by Diels-Alder reaction. Firstly, poly(styrene-alt-maleic anhydride) copolymers were functionalized with furfuryl amine and hydrazine in a simple one-pot reaction. Secondly, doxorubicin (DOX) was further incorporated to copolymer via hydrazone linkage in the presence of dithiobismaleimidoethane as a cross-linking agent resulted in prodrug nanogels. The prodrug nanogels were stable under physiological condition while the disintegration of nanogels was taken place and DOX released rapidly in the redox medium. The prodrug nanogels presented strong toxicity towards HepG2 cell line, whereas they had almost no inhibition in HEK293 normal cell line. The results suggest that DOX conjugate-based nanogels would be a potential candidate for efficient drug nanocarrier.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang Y, Liu Y, Liu Y, Zhou W, Wang H, Wan G, Sun D, Zhang N, Wang Y (2015) A polymeric prodrug of cisplatin based on pullulan for the targeted therapy against hepatocellular carcinoma. Int J Pharm 483:89–100. https://doi.org/10.1016/j.ijpharm.2015.02.027

    Article  CAS  PubMed  Google Scholar 

  2. Singh SVB, Jung E, Noh J, Yoo D, Kang C, Hyeon H, Kim G-W, Khang G, Lee D (2019) Hydrogen peroxide-activatable polymeric prodrug of curcumin for ultrasound imaging and therapy of acute liver failure. Nanomed Nanotechnol 16:45–55. https://doi.org/10.1016/j.nano.2018.11.003

    Article  CAS  Google Scholar 

  3. Horo H, Das S, Mandal B, Kundu LM (2019) Development of a photoresponsive chitosan conjugated prodrug nanocarrier for controlled delivery of antitumor drug 5-fluorouracil. Int J Biol Macromol 121:1070–1076. https://doi.org/10.1016/j.ijbiomac.2018.10.095

    Article  CAS  PubMed  Google Scholar 

  4. Kim DW, Cao XT, Kim YH, Gal Y-S, Lim KT (2017) Block copolymeric micelles of poly(ethylene oxide)-b-poly (glycidyl methacrylate) for pH triggered drug release. Mol Cryst Liq Cryst 644:145–151. https://doi.org/10.1080/15421406.2016.1278131

    Article  CAS  Google Scholar 

  5. Cao XT, Kim YH, Park JM, Lim KT (2016) One-pot syntheses of dual responsive core cross-linked polymeric micelles and covalently entrapped drug by click chemistry. Eur Polym J 78:264–273. https://doi.org/10.1016/j.eurpolymj.2016.03.039

    Article  CAS  Google Scholar 

  6. Li D, Song Y, He J, Zhang M, Ni P (2019) Polymer-doxorubicin prodrug with biocompatibility, pH response, and main chain breakability prepared by catalyst-free click reaction. ACS Biomater Sci Eng 5:2307–2315. https://doi.org/10.1021/acsbiomaterials.9b00301

    Article  CAS  PubMed  Google Scholar 

  7. Kaur K, Jindal R (2020) Comparative studies of directly loaded and cyclodextrin-mediated release of theophylline and evaluation of biodegradation studies of HPNs. Polym Bull. https://doi.org/10.1007/s00289-020-03323-z

  8. Sonawane SJ, Kalhapure RS, Govender T (2017) Hydrazone linkages in pH responsive drug delivery systems. Eur J Pharm Sci 99:45–65. https://doi.org/10.1016/j.ejps.2016.12.011

    Article  CAS  PubMed  Google Scholar 

  9. Cao XT, Le CMQ, Thi HHP, Kim G-D, Gal Y-S, Lim KT (2017) Redox-responsive core cross linked prodrug micelles prepared by click chemistry for pH-triggered doxorubicin delivery. Express Polym Lett 11:832–845. https://doi.org/10.3144/expresspolymlett.2017.79

    Article  CAS  Google Scholar 

  10. Sirova M, Mrkvan T, Etrych T, Chytil P, Rossmann P, Ibrahimova M, Kovar L, Ulbrich K, Rihova B (2010) Preclinical evaluation of linear HPMA-doxorubicin conjugates with pH-sensitive drug release: efficacy, safety, and immunomodulating activity in murine model. Pharm Res 27:200–208. https://doi.org/10.1007/s11095-009-9999-7

  11. Vetvicka D, Hruby M, Hovorka O, Etrych T, Vetrik M, Kovar L, Kovar M, Ulbrich K, Rihova B (2009) Biological evaluation of polymeric micelles with covalently bound doxorubicin. Bioconjug Chem 20:2090–2097. https://doi.org/10.1021/bc900212k

    Article  CAS  PubMed  Google Scholar 

  12. Coimbra M, Rijcken CJF, Stiger M, Hennink WE, Storm G, Schiffelers RM (2012) Antitumor efficacy of dexamethasone-loaded core-crosslinked polymeric micelles. J Control Release 163:361–367. https://doi.org/10.1016/j.jconrel.2012.09.014

    Article  CAS  PubMed  Google Scholar 

  13. Talelli M, Iman M, Varkouhi AK, Rijcken CJF, Schiffelers RM, Etrych T, Ulbrich K, van Nostrum CF, Lammers T, Storm G, Hennink WE (2010) Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials 31:7797–7804. https://doi.org/10.1016/j.biomaterials.2010.07.005

    Article  CAS  PubMed  Google Scholar 

  14. Etrych T, Mrkvan T, Chytil P, Konak C, Rihova B, Ulbrich K (2008) N- (2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation. J Appl Polym Sci 109:3050–3061. https://doi.org/10.1002/app.28466

    Article  CAS  Google Scholar 

  15. Elkassih SA, Kos P, Xiong H, Siegwart DJ (2019) Degradable redox-responsive disulfide based nanogel drug carriers via dithiol oxidation polymerization. Biomater Sci 7:607–617. https://doi.org/10.1039/C8BM01120F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nikfarjam M, Kokabi M (2020) Chitosan/laponite nanocomposite nanogels as a potential drug delivery system. Polym Bull. https://doi.org/10.1007/s00289-020-03335-9

  17. Oehrl A, Schötz S, Haag R (2020) Synthesis of pH-degradable polyglycerol-based nanogels by iEDDA-mediated crosslinking for encapsulation of asparaginase using inverse nanoprecipitation. Colloid Polym Sci 298:719–733. https://doi.org/10.1007/s00396-020-04675-8

    Article  CAS  Google Scholar 

  18. Ashrafizadeh M, Tam KC, Javadi A, Abdollahi M, Sadeghnejad S, Bahramian A (2019) Synthesis and physicochemical properties of dual-responsive acrylic acid/butyl acrylate cross-linked nanogel systems. J Colloid Interface Sci 556:313–323. https://doi.org/10.1016/j.jcis.2019.08.066

    Article  CAS  PubMed  Google Scholar 

  19. Baranello MP, Bauer L, Benoit DSW (2014) Poly(styrene-alt-maleic anhydride)-based diblock copolymer micelles exhibit versatile hydrophobic drug loading, drug dependent release, and internalization by multidrug resistant ovarian cancer cells. Biomacromolecules 15:2629–2641. https://doi.org/10.1021/bm500468d

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Li P, Lu J, Zhao Y (2020) Synthesis of pH-, thermo- and salt-responsive hydrogels containing MCM-41 as crosslinker in situ for controlled drug release. Polym Bull. https://doi.org/10.1007/s00289-020-03325-x

  21. Saidi M, Dabbaghi A, Rahmani S (2020) Swelling and drug delivery kinetics of click-synthesized hydrogels based on various combinations of PEG and star-shaped PCL: influence of network parameters on swelling and release behavior. Polym Bull 77:3989–4010. https://doi.org/10.1007/s00289-019-02948-z

    Article  CAS  Google Scholar 

  22. Zhang X, Malhotra S, Molina M, Haag R (2015) Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem Soc Rev 44:1948–1973. https://doi.org/10.1039/C4CS00341A

    Article  CAS  PubMed  Google Scholar 

  23. Sivaram AJ, Rajitha P, Maya S, Jayakumar R, Sabitha M (2015) Nanogels for delivery, imaging and therapy. WIREs Nanomed Nanobi 7:509–533. https://doi.org/10.1002/wnan.1328

    Article  CAS  Google Scholar 

  24. Wang Q, Gao F, Zhou X (2020) Redox-responsive AIE micelles for intracellular paclitaxel delivery. Colloid Polym Sci 298:1119–1128. https://doi.org/10.1007/s00396-020-04679-4

    Article  CAS  Google Scholar 

  25. Li M, Tang Z, Sun H, Ding J, Song W, Chen X (2013) pH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery. Polym Chem 4:1199–1207. https://doi.org/10.1039/C2PY20871G

    Article  CAS  Google Scholar 

  26. Sisson AL, Papp I, Landfester K, Haag R (2009) Functional nanoparticles from dendritic precursors: hierarchical assembly in miniemulsion. Macromolecules 42:556–559. https://doi.org/10.1021/ma802238e

    Article  CAS  Google Scholar 

  27. Chen W, Achazi K, Schade B, Haag R (2015) Charge-conversional and reduction-sensitive poly(vinyl alcohol) nanogels for enhanced cell uptake and efficient intracellular doxorubicin release. J Control Release 205:15–24. https://doi.org/10.1016/j.jconrel.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  28. Steinhilber D, Sisson AL, Mangoldt D, Welker P, Licha K, Haag R (2010) Synthesis, reductive cleavage and cellular interaction studies of biodegradable, polyglycerol nanogels. Adv Funct Mater 20:4133–4138. https://doi.org/10.1002/adfm.201000410

    Article  CAS  Google Scholar 

  29. Zhang Y, Ding J, Li M, Chen X, Xiao C, Zhuang X, Huang Y, Chen X (2016) One-step “click chemistry”-synthesized cross-linked prodrug nanogel for highly selective intracellular drug delivery and upregulated antitumor efficacy. ACS Appl Mater Interfaces 8:10673–10682. https://doi.org/10.1021/acsami.6b00426

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto S, Kaneo Y, Maeda H (2013) Styrene maleic acid anhydride copolymer (SMA) for the encapsulation of sparingly water-soluble drugs in nanoparticles. J Drug Del Sci Tech 23:231–237. https://doi.org/10.1016/S1773-2247(13)50035-9

    Article  CAS  Google Scholar 

  31. Padmavathy N, Samantaray PK, Ghosh LD, Madras G, Bose S (2017) Selective cleavage of polyphosphoester in crosslinked copper based nanogels: enhanced antibacterial performance through controlled release of copper. Nanoscale 9:12664–12676. https://doi.org/10.1039/C7NR02446K

    Article  CAS  PubMed  Google Scholar 

  32. Maeda H, Ueda M, Morinaga T, Matsumoto T (1985) Conjugation of poly(styrene-co-maleic acid) derivatives to the antitumor protein neocarzinostatin: pronounced improvements in pharmacological properties. J Med Chem 28:455–461. https://doi.org/10.1021/jm00382a012

    Article  CAS  PubMed  Google Scholar 

  33. Chacko RT, Ventura J, Zhuang J, Thayumanavan S (2012) Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64:836–851. https://doi.org/10.1016/j.addr.2012.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Le CMQ, Cao XT, Lim KT (2017) Ultrasound-promoted direct functionalization of multi-walled carbon nanotubes in water via Diels-Alder “click chemistry”. Ultrason Sonochem 39:321–329. https://doi.org/10.1016/j.ultsonch.2017.04.042

    Article  CAS  PubMed  Google Scholar 

  35. Le CMQ, Cao XT, Tu TTK, Gal Y-S, Lim KT (2018) Facile approach to prepare pH and redox responsive nanogels via Diels-Alder click reaction. Express Polym Lett 12:688–698. https://doi.org/10.3144/expresspolymlett.2018.59

    Article  CAS  Google Scholar 

  36. Zhan F, Chen W, Wang Z, Lu W, Cheng R, Deng C, Meng F, Liu H, Zhong Z (2011) Acid-activatable prodrug nanogels for efficient intracellular doxorubicin release. Biomacromolecules 12:3612–3620. https://doi.org/10.1021/bm200876x

    Article  CAS  PubMed  Google Scholar 

  37. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery. Biomaterials 30:5757–5766. https://doi.org/10.1016/j.biomaterials.2009.07.020

    Article  CAS  PubMed  Google Scholar 

  38. Rao N V, Mane SR, Kishore A, Sarma JD, Shunmugam R (2012) Norbornene derived doxorubicin copolymers as drug carriers with pH responsive hydrazone linker. Biomacromolecules 13:221–230. https://doi.org/10.1021/bm201478k

    Article  CAS  PubMed  Google Scholar 

  39. Fu C, Li H, Li N, Miao X, Xie M, Du W, Zhang L-M (2015) Conjugating an anticancer drug onto thiolated hyaluronic acid by acid liable hydrazone linkage for its gelation and dual stimuli-response release. Carbohydr Polym 128:163–170. https://doi.org/10.1016/j.carbpol.2015.04.024

    Article  CAS  PubMed  Google Scholar 

  40. Christie RJ, Anderson DJ, Grainger DW (2010) Comparison of hydrazone heterobifunctional crosslinking agents for reversible conjugation of thiol-containing chemistry. Bioconjug Chem 21(10):1779–1787. https://doi.org/10.1021/bc100049c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. West KR, Otto S (2005) Reversible covalent chemistry in drug delivery. Curr Drug Discov Technol 2:123–160. https://doi.org/10.2174/1570163054866882

    Article  CAS  PubMed  Google Scholar 

  42. Filomeni G, Rotilio G, Ciriolo MR (2002) Cell signalling and the glutathione redox system. Biochem Pharmacol 64:1057–1064. https://doi.org/10.1016/S0006-2952(02)01176-0

    Article  CAS  PubMed  Google Scholar 

  43. Tu Y, Peng F, White PB, Wilson DA (2017) Redox-sensitive stomatocyte nanomotors: destruction and drug release in the presence of glutathione. Angew Chem Int Ed 56:7620–7624. https://doi.org/10.1002/anie.201703276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge for support of the Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Thang Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X.T., Vu-Quang, H., Doan, VD. et al. One-step approach of dual-responsive prodrug nanogels via Diels-Alder reaction for drug delivery. Colloid Polym Sci 299, 675–683 (2021). https://doi.org/10.1007/s00396-020-04789-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04789-z

Keywords

Navigation