Skip to main content
Log in

Swelling kinetics and rheological behaviour of microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(acrylamide-co-acrylic acid) hydrogels are synthesized by free-radical polymerization in a microwave oven, in a one-step procedure that provides reduction in time, energy and resources in comparison with conventional heating in aqueous solution. Hydrogel microstructures are analysed by scanning electron microscopy (SEM). Dynamic swelling tests are carried out at three pH values (3.0, 10.0 and 7.0) and two temperatures (25 and 37 °C) considering the conditions for hydrogel application. SEM pictures indicate irregular cellular and porous structure of microwave synthesized hydrogels, obtained as a result of simultaneous polymerization and water evaporation. The results of swelling measurements show that the swelling ratio at pH 7.0 and 10.0 increases with increasing in acrylic acid amount, while at pH 3.0 decreases. Swelling rate is higher at physiological temperature, and solvent diffusion is relaxation-controlled. Swelling of hydrogels follows the second-order kinetics. Rheological behaviour of hydrogels has been assessed using the results of frequency and amplitude sweep tests applied at the systems in equilibrium swollen state. Obtained data reveal a dominant elastic character and a long linear viscoelastic region (up to 2000 Pa), as well as a similar three-dimensional internal structure of investigated hydrogels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Kostić A, Jovanović J, Adnadjević B, Popović A (2007) Comparison of the swelling kinetics of a partially neutralized poly(acrylic acid) hydrogel in distilled water. Journal of Serbian Chemical Sociaty 72:1139–1153. https://doi.org/10.2298/JSC0711139K

    Article  CAS  Google Scholar 

  2. Kopecek J (2002) Polymer chemistry: swell gels. Nature 417:388–391. https://doi.org/10.1038/417388a

    Article  CAS  PubMed  Google Scholar 

  3. Mahkam M, Allahverdipoor M (2004) Controlled release of biomolecules from pH-sensitive network polymers prepared by radiation polymerization. J Drug Target 12:151–156. https://doi.org/10.1080/10611860410001688009

    Article  CAS  PubMed  Google Scholar 

  4. Xue W, Champ S, Huglin M (2001) Network and swelling parameters of chemically crosslinked thermoreversible hydrogels. Polymer 42:3665–3669. https://doi.org/10.1016/S0032-3861(00)00627-3

    Article  CAS  Google Scholar 

  5. Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Material Science and Engineering: C 57:414–433. https://doi.org/10.1016/j.msec.2015.07.053

    Article  CAS  Google Scholar 

  6. Okay O, Sariisik SB, Zor SD (1998) Swelling behavior of anionic acrylamide-based hydrogels in aqueous salt solutions: Comparison of experiment with theory. J Appl Polym Sci 70:567–575. https://doi.org/10.1002/(SICI)1097-4628(19981017)70:3<567::AID-APP19>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  7. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19:375–398

    CAS  Google Scholar 

  8. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118. https://doi.org/10.1016/j.progpolymsci.2008.07.005

    Article  CAS  Google Scholar 

  9. Shah R, Saha N, Kitano T, Saha P (2014) Preparation of CaCO3-based biomineralized polyvinylpyrrolidone–carboxymethylcellulose hydrogels and their viscoelastic behavior. J Appl Polym Sci 131:40237. https://doi.org/10.1002/app.40237

    Article  CAS  Google Scholar 

  10. Tang S, Glassman MJ, Li S, Socrate S, Olsen BD (2014) Oxidatively responsive chain extension to entangle engineered protein hydrogels. Macromolecules 47:791–799. https://doi.org/10.1021/ma401684w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gradzielski M, Homann I (2018) Polyelectrolyte-surfactants complexes (PESCs) composed of oppositely charged components. Current Opinion in Colloid Interface and Science 35:124–141. https://doi.org/10.1016/j.cocis.2018.01.017

    Article  CAS  Google Scholar 

  12. Smilek J, Jarábková S, Velcer T, Pekar M (2019) Compositional and temperature effects on the rheological properties of polyelectrolyte-surfactant hydrogels. Polymers 11:927. https://doi.org/10.3390/polym11050927

    Article  CAS  PubMed Central  Google Scholar 

  13. Mah E, Ghosh R (2013) Thermo-responsive hydrogels for stimuli-responsive membranes. Processes 1:238–262. https://doi.org/10.3390/pr1030238

    Article  Google Scholar 

  14. Craciun G, Ighigeanu D, Manaila E, Stelescu MD (2015) Synthesis and characterization of poly(acrylamide-co-acrylic acid) flocculant obtained by electron beam irradiation. Mater Res 18:984–993. https://doi.org/10.1590/1516-1439.00871

    Article  CAS  Google Scholar 

  15. Mutar MA, Kmal RK (2012) Preparation of copolymer of acrylamide and acrylic acid and its application for slow release sodium nitrate fertilizer 71-83. https://doi.org/10.13140/RG.2.2.26409.44647

  16. Tomar RS, Gupta I, Singhal NAK (2007) Synthesis of poly (acrylamide-co-acrylic acid) based superabsorbent hydrogels: study of network parameters and swelling behaviour. Polym-Plast Technol Eng 46:481–488. https://doi.org/10.1080/03602550701297095

    Article  CAS  Google Scholar 

  17. Chen J, Zhao Y (2000) Relation between water absorbency and reaction conditions in aqueous solution polymerization of polyacrylate superabsorbent polymers. J Appl Polym Sci 75:808–814. https://doi.org/10.1002/(SICI)1097-4628(20000207)75:6<808::AID-APP10>3.0.CO;2-3

    Article  CAS  Google Scholar 

  18. Nesrinne S, Djamel A (2007) Synthesis, characterization and rheologicalbehavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels. Arab J Chem 10:539–547. https://doi.org/10.1016/j.arabjc.2013.11.027

    Article  CAS  Google Scholar 

  19. El-Sherbiny IM, Yacoub MH (2013) Hydrogel scaffolds for tissue engineering: progress and challenges. Global Cardiology Science and Practice 2013:1–27. https://doi.org/10.5339/gcsp.2013.38

    Article  Google Scholar 

  20. Saxena VK, Chandra U (2011) Microwave synthesis: a physical concept. In: Chandra U (ed) Microwave heating, IntechOpen. https://doi.org/10.5772/22888

  21. Kalaleh HA, Tally M, Atassi Y (2015) Preparation of bentonite-g-poly(acrylate-co-acrylamide) superabsorbent polymer composite for agricultural applications: optimization and characterization. Polymer Science Series B 57:750–758. https://doi.org/10.1134/S1560090415060081

    Article  CAS  Google Scholar 

  22. Erceg T, Cakić S, Cvetinov M, Dapčević-Hadnađev T, BudinskiSimendić J, Ristić I (2019) The properties of conventionally and microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels. Polym Bull 77:2089–2110. https://doi.org/10.1007/s00289-019-02840-w

    Article  CAS  Google Scholar 

  23. Erceg T, Ristić I, Hadnađev M, Cakić S, Budinski-Simendić J (2018) Swelling, mechanical and thermal properties of microwave–synthesized intelligent soft materials. Materials Science. Non-Equilibrium Phase Transformations 4:86–88

    Google Scholar 

  24. Kıpçak AS, Ismail O, Doymaz I, Pişkin S (2014) Modeling and investigation of the swelling kinetics of acrylamide-sodium acrylate hydrogel. Journal of Chemistry 2014:1–8. https://doi.org/10.1155/2014/281063

    Article  CAS  Google Scholar 

  25. Boztepe C, Şölener M, Yuceer M, Kunkul A, Kabasakal O (2015) Modeling of swelling behaviors of acrylamide-based polymeric hydrogels by intelligent system. J Dispers Sci Technol 36:1647–1656. https://doi.org/10.1080/01932691.2014.996892

    Article  CAS  Google Scholar 

  26. Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218. https://doi.org/10.1063/1.437602

    Article  CAS  Google Scholar 

  27. Li Y, Tanaka T (1990) Kinetics of swelling and shrinking of gels. J Chem Phys 92:1365–1359. https://doi.org/10.1063/1.458148

    Article  CAS  Google Scholar 

  28. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46. https://doi.org/10.1016/s0939-6411(00)00090-4

    Article  CAS  Google Scholar 

  29. Omidian H, Hashemi SA, Sammes PG, Meldrum I (1998) A model for the swelling of superabsorbent polymers. Polymer 39:6697–6704. https://doi.org/10.1016/S0032-3861(98)00095-0

    Article  CAS  Google Scholar 

  30. Sugahara Y, Takahisa O (2001) Synthesis of starch-graft -polyacrylonitrile hydrolyzate and its characterization. J Appl Polym Sci 82:1437–1443. https://doi.org/10.1002/app.1981

    Article  CAS  Google Scholar 

  31. Soleimani F, Sadeghi H, Shashavari H, Soleimani A, Sadeghi F (2013) Search result studies of swelling kinetics of carboxymethyl cellulose-g-PMAAm-co-PNIPAm superabsorbent hydrogels. Asian Journal of Chemistry 25:4851–4855. https://doi.org/10.14233/ajchem.2013.14123

    Article  CAS  Google Scholar 

  32. Quintana JR, Valderruten NE, Katime I (1999) Synthesis and swelling kinetics of poly(dimethylaminoethyl acrylate methyl chloride quaternary-co-itaconic acid) hydrogels. Langmuir 15:4728–4730. https://doi.org/10.1021/la980982

    Article  CAS  Google Scholar 

  33. Pescosolido L, Feruglio L, Farra R, Fiorentino S, Colombo I, Coviello T, Matricardi PW, Hennink WE, Vermonden T, Grassi M (2012) Mesh size distribution determination of interpenetrating polymer network hydrogels. Soft Matter 8:7708–7715. https://doi.org/10.1039/C2SM25677K

    Article  CAS  Google Scholar 

  34. Chavda HV, Patel RD, Modhia IP, Patel CN (2012) Preparation and characterization of superporous hydrogel based on different polymers. International Journal of Pharmaceutical Investigation 2:134–139. https://doi.org/10.4103/2230-973x.104396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sinnwell S, Ritter H (2007) Recent advances in microwave-assisted polymer synthesis. Aust J Chem 60:729–743. https://doi.org/10.1002/app.1981

    Article  CAS  Google Scholar 

  36. Gabriel C, Gabriel S, Grant EH, Halstead BS, Mingos DMP (1998) Dielectric parameters relevant to microwave heating. Chem Soc Rev 27:213–223. https://doi.org/10.1039/A827213Z

    Article  CAS  Google Scholar 

  37. Braun D, Cherdron H, Ritter H (2001) Polymer synthesis: theory and practice, fundamentals, methods, experiments3rd edn. Springer Verlag, Berlin

    Book  Google Scholar 

  38. Kolthoff IM, Miller IK (1951) The chemistry of persulfate. II The reaction of persulfate with mercaptans solubilized in solutions of saturated fatty acid soaps. The Journal of American Chemical Society 73:5118–5122. https://doi.org/10.1021/ja01155a030

    Article  CAS  Google Scholar 

  39. Kokufuta E (2005) Polyelectrolyte gel transitions: experimental aspects of charge inhomogeneity in the swelling and segmental attractions in the shrinking. Langmuir 21:10004–10015. https://doi.org/10.1021/la050530e

    Article  CAS  PubMed  Google Scholar 

  40. Chaudhari AK, Han I, Tan JC (2015) Multifunctional supramolecular hybrid materials constructed from hierarchical self-ordering of in situ generated metal-organic framework (MOF) nanoparticles. Adv Mater 27:4438–4446. https://doi.org/10.1002/adma.201501448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cuomo F, Cofelice M, Lopez F (2019) Rheological characterization of hydrogels from alginate-based nanodispersion. Polymers 11:259. https://doi.org/10.3390/polym11020259

    Article  CAS  PubMed Central  Google Scholar 

  42. Ali W, Gebert B, Altinpinar S, Mayer-Gall T, Ulbricht M, Gutmann JS, Graf K (2018) On the potential of using dual-function hydrogels for brackish water desalination. Polymers 10:567. https://doi.org/10.3390/polym10060567

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

The authors received financial support from the Ministry of Education, Science and Technological Development, Republic of Serbia, project number 451-03-68/2020-14/ 200134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Erceg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erceg, T., Dapčević-Hadnađev, T., Hadnađev, M. et al. Swelling kinetics and rheological behaviour of microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels. Colloid Polym Sci 299, 11–23 (2021). https://doi.org/10.1007/s00396-020-04763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04763-9

Keywords

Navigation