Skip to main content
Log in

Selective interaction of synthetic and natural pesticides with metal ions in micellar media: extractions using aqueous biphasic systems

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Synthetic pesticides represent a class of toxic chemical compounds which are now slowly being replaced by some natural alternatives. Here we have considered two pesticides, a synthetic one (chlorpyrifos) and another naturally obtained (eugenol) pesticide, to make a comparative study of their interaction towards metal ions (Cu2+, Co2+, Ni2+ and Zn2+). A thorough study of their extraction patterns in aqueous biphasic system (ABS) has been done. Both water and 50% (w/v) (83 mM) PEG#6000 media were taken to perform the metal-pesticide complexation study. We found a selective interaction between chlorpyrifos and copper ion in PEG media. The newly formed copper-chlorpyrifos complex gives a characteristic λmax at 322 nm in UV-Vis spectral study. The binding constant of the complex is 14.48 × 103 mol−1 (from B-H plot) and it follows the first-order reaction kinetics. To study the extraction pattern, two ABSs are considered, one is PEG#6000-sodium tartrate and another one is PEG#6000-sodium citrate. Using these two ABSs, chlorpyrifos, eugenol, copper and copper-chlorpyrifos complex were extracted at different pHs (5, 7 and 9) of the salt-rich phases. Complete extractions were observed for eugenol, chlorpyrifos and Cu-chlorpyrifos complexes from all the pH of tartrate as salt-rich phase. The micellar medium of PEG#6000 is most favourable to form Cu-chlorpyrifos complex and for extraction study. The polymer-rich phase was regenerated using ultracentrifugation, thermoseparation and ion exchange methods for reuse.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aktar Md W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aswathi A, Pandey A, Sukumaran RK (2019) Rapid degradation of the organophosphate pesticide–chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3. Bioresour Technol 292:122025. https://doi.org/10.1016/j.biortech.2019.122025

    Article  CAS  PubMed  Google Scholar 

  3. Karami-Mohajeri S, Abdollahi M (2011) Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Hum Exp Toxicol 30:1119–1140. https://doi.org/10.1177/0960327110388959

    Article  CAS  PubMed  Google Scholar 

  4. Yurumez Y, Cemek M, Yavuz Y, Birdane YO, Buyukokuroglu ME (2007) Beneficial effect of N-acetylcysteine against organophosphate toxicity in mice. Biol Pharm Bull 30:490–494. https://doi.org/10.1248/bpb.30.490

    Article  CAS  PubMed  Google Scholar 

  5. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  6. Jenne EA (1968) Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. Adv Chem 73:337–387. https://doi.org/10.1021/ba-1968-0073.ch021

    Article  Google Scholar 

  7. Singh N, Gupta VK, Kumar A, Sharma B (2017) Synergistic effects of heavy metals and pesticides in living systems. Front Chem 5:70. https://doi.org/10.3389/fchem.2017.00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaur S, Kumar V, Chawla M, Cavallo L, Poater A, Upadhyay N (2017) Pesticides curbing soil fertility: effect of complexation of free metal ions. Frontiers Front Chem 5:43. https://doi.org/10.3389/fchem.2017.00043

    Article  CAS  Google Scholar 

  9. Mfarrej MFB, Rara FM (2019) Competitive, sustainable natural pesticides. Acta Ecol Sin 39:145–151. https://doi.org/10.1016/j.chnaes.2018.08.005

    Article  Google Scholar 

  10. Isman MB (2004) Plant essential oils as green pesticides for pest and disease management. In: Nelson WM (ed) Agricultural applications in green chemistry, vol 887. ACS symposium series; American Chemical Society, Washington, pp 41–51. https://doi.org/10.1021/bk-2004-0887.ch004

    Chapter  Google Scholar 

  11. Bendre RS, Rajput JD, Bagul SD, Karandikar PS (2016) Outlooks on medicinal properties of eugenol and its synthetic derivatives. Nat Prod Chem Res 4:1–6. https://doi.org/10.4172/2329-6836.1000212

    Article  CAS  Google Scholar 

  12. Huddleston JG, Willauer HD, Griffin ST, Rogers RD (1999) Aqueous polymeric solutions as environmentally benign liquid/liquid extraction media. Ind Eng Chem Res 38:2523–2539. https://doi.org/10.1021/ie980505m

    Article  CAS  Google Scholar 

  13. Chakraborty A, Sen K (2016) Impact of pH and temperature on phase diagrams of different aqueous biphasic systems. J Chromatogr A 1433:41–55. https://doi.org/10.1016/j.chroma.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  14. Sen K, Chakraborty A (2016) A glycine based aqueous biphasic system: application in sequential separation of Ni, Cu and Zn. J Mol Liq 218:106–111. https://doi.org/10.1016/j.molliq.2016.02.028

    Article  CAS  Google Scholar 

  15. Chakraborty A, Sen K (2014) Phase separation in aqueous systems for realizing virtually significant extractions. RSC Adv 4:64328–64335. https://doi.org/10.1039/C4RA06798C

    Article  CAS  Google Scholar 

  16. Chakraborty A, Sen K (2017) Ionic liquid vs tri-block copolymer in a new aqueous biphasic system for extraction of Zn-cholesterol complex. J Mol Liq 229:278–284. https://doi.org/10.1016/j.molliq.2016.12.074

    Article  CAS  Google Scholar 

  17. Freire MG, Claudio AFM, Araujo JM, Coutinho JA, Marrucho IM, Lopes JNC, Rebelo LPN (2012) Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 41:4966–4995. https://doi.org/10.1039/C2CS35151J

    Article  CAS  PubMed  Google Scholar 

  18. Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973. https://doi.org/10.1126/science.1074972

    Article  CAS  PubMed  Google Scholar 

  19. Paik SP, Ghatak SK, Dey D, Sen K (2012) Poly (ethylene glycol) vesicles: self-assembled site for luminescence generation. Anal Chem 84:7555–7561. https://doi.org/10.1021/ac301731x

    Article  CAS  PubMed  Google Scholar 

  20. Wysoczanska K, Macedo EA (2016) Influence of the molecular weight of PEG on the polymer/salt phase diagrams of aqueous two-phase systems. J Chem Eng Data 61:4229–4235. https://doi.org/10.1021/acs.jced.6b00591

    Article  CAS  Google Scholar 

  21. Wysoczanska K, Do HT, Sadowski G, Macedo EA, Held C (2020) Partitioning of water-soluble vitamins in biodegradable ATPS: ePC-SAFT predictions and experimental validation. AIChE J:e16984. https://doi.org/10.1002/aic.16984

  22. Wysoczanska K, Macedo EA (2016) Effect of molecular weight of polyethylene glycol on the partitioning of DNP-amino acids: PEG (4000, 6000) with sodium citrate at 298.15 K. fluid Ph. Equilibria 428:84–91. https://doi.org/10.1016/j.fluid.2016.07.009

    Article  CAS  Google Scholar 

  23. Hatti-Kaul R (2000) Methods in biotechnology: aqueous two phase systems, methods and protocol, Humana press, Totowa New Jersey, Vol. 11. ISBN 978-1-59259-028-5

  24. Das L, Paik SP, Sen K (2019) Thermoseparative regeneration of triblock copolymer after aqueous biphasic extraction of molybdate species. J Chem Eng Data 64:51–59. https://doi.org/10.1021/acs.jced.8b00455

    Article  CAS  Google Scholar 

  25. Ghatak SK, Dey D, Sen S, Sen K (2013) Aromatic amino acids in high selectivity bismuth (III) recognition. Analyst 138:2308–2314. https://doi.org/10.1039/C3AN36842D

    Article  CAS  PubMed  Google Scholar 

  26. Paik SP, Sen K (2016) Species dependent iodine extractions in polymer based aqueous biphasic systems: emerging relations with aggregation number of polymeric micelles. J Mol Liq 223:1062–1066. https://doi.org/10.1016/j.molliq.2016.09.031

    Article  CAS  Google Scholar 

  27. Chakraborty A, Mukhopadhyay C, Sen K (2016) Block copolymer and organic salts in forming aqueous biphases: a platform to identify molecular interactions in aqueous medium. RSC Adv 6:77673–77681. https://doi.org/10.1039/C6RA16957K

    Article  CAS  Google Scholar 

  28. Svehla G, Sivasankar B (2014) Vogel’s qualitative inorganic analysis7th edn. Pearson Education India ISBN: 978-81-775-8232-1

  29. Irving H, Williams RJP (1953) The stability of transition-metal complexes. J Chem Soc 637:3192–3210. https://doi.org/10.1039/JR9530003192

    Article  Google Scholar 

  30. Hyde AM, Zultanski SL, Waldman JH, Zhong YL, Shevlin M, Peng F (2017) General principles and strategies for salting-out informed by the Hofmeister series. Org Process Res Dev 21:1355–1370. https://doi.org/10.1021/acs.oprd.7b00197

    Article  CAS  Google Scholar 

Download references

Funding

K. S. acknowledges UGC CAS V for funding. L. D. acknowledges UGC-Ref. No.: 259/ (CSIR-UGC NET JUNE 2017) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalika Sen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 516 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, L., Paik, S.P. & Sen, K. Selective interaction of synthetic and natural pesticides with metal ions in micellar media: extractions using aqueous biphasic systems. Colloid Polym Sci 298, 1669–1678 (2020). https://doi.org/10.1007/s00396-020-04760-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04760-y

Keywords

Navigation