Skip to main content

Advertisement

Log in

A dual-crosslinking strategy for building photoluminescence hydrogel with toughness, self-recovery, and two-color tunability

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The development of tenacity photoluminescent (PL) hydrogels is very great significance to promote the application of optical technology in hydrogel. Herein, we report a high-toughness PL hydrogel that combines synthetic hydrophilic lanthanide complex (LCs) and tannic acid (TA) with polyvinyl alcohol (PVA) by frozen-thawing. The resulting hydrogel has high mechanical strength (1194.46-kPa tensile strength, 1266.17-kJ m−3 toughness energy, 1915.58-kPa compressive strength, and 269.79-kJ m−3 energy dissipation at 80% compression), excellent self-recover and anti-fatigue performance, good photoluminescence, and switchable functions under UV light, showing red (254 nm) and green (365 nm), respectively. The design strategy offers a new approach for the preparation of multifunctional and tenacity PL hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wei Z, Yang JH, Du XJ, Xu F, Zrinyi M, Osada Y, Li F, Chen YM (2013) Dextran-based self-healing hydrogels formed by reversible diels-alder reaction under physiological conditions. Macromol Rapid Commun 34(18):1464–1470. https://doi.org/10.1002/marc.201300494

    Article  CAS  PubMed  Google Scholar 

  2. You J, Xie S, Cao J, Ge H, Xu M, Zhang L, Zhou J (2016) Quaternized chitosan/poly(acrylic acid) polyelectrolyte complex hydrogels with tough, self-recovery, and tunable mechanical properties. Macromolecules 49(3):1049–1059. https://doi.org/10.1021/acs.macromol.5b02231

    Article  CAS  Google Scholar 

  3. Hu C, Wang MX, Sun L, Yang JH, Zrinyi M, Chen YM (2017) Dual-physical cross-linked tough and photoluminescent hydrogels with good biocompatibility and antibacterial activity. Macromol Rapid Commun 38(10):1600788–1600795. https://doi.org/10.1002/marc.201600788

    Article  CAS  Google Scholar 

  4. Zhi H, Fei X, Tian J, Jing M, Xu L, Wang X, Liu D, Wang Y, Liu J (2017) A novel transparent luminous hydrogel with self-healing property. J Mater Chem B 5(29):5738–5744. https://doi.org/10.1039/c7tb00975e

    Article  CAS  PubMed  Google Scholar 

  5. Taylor DL, In Het Panhuis M (2016) Self-healing hydrogels. Adv Mater 28(41):9060–9093. https://doi.org/10.1002/adma.201601613

    Article  CAS  PubMed  Google Scholar 

  6. Wang MX, Yang CH, Liu ZQ, Zhou J, Xu F, Suo Z, Yang JH, Chen YM (2015) Tough photoluminescent hydrogels doped with lanthanide. Macromol Rapid Commun 36(5):465–471. https://doi.org/10.1002/marc.201400630

    Article  CAS  PubMed  Google Scholar 

  7. Zhang C, Liu C, Xue X, Zhang X, Huo S, Jiang Y, Chen WQ, Zou G, Liang XJ (2014) Salt-responsive self-assembly of luminescent hydrogel with intrinsic gelation-enhanced emission. ACS Appl Mater Interfaces 6(2):757–762. https://doi.org/10.1021/am4049354

    Article  CAS  PubMed  Google Scholar 

  8. Li QF, Du X, Jin L, Hou M, Wang Z, Hao J (2016) Highly luminescent hydrogels synthesized by covalent grafting of lanthanide complexes onto PNIPAM: via one-pot free radical polymerization. J Mater Chem C 4(15):3195–3201. https://doi.org/10.1039/c6tc00336b

    Article  CAS  Google Scholar 

  9. Wang Y, Zhang W (2019) Fluorescent color conversion of luminous hydrogel upon stimulation of basic molecule. J Photochem Photobiol A Chem 385:112086–112091. https://doi.org/10.1016/j.jphotochem.2019.112086

    Article  CAS  Google Scholar 

  10. Di Lorenzo ML, Cocca M, Avella M, Gentile G, Gutierrez D, Della Pirriera M, Torralba-Calleja E, Kennedy M, Ahmed H, Doran J (2016) Down shifting in poly(vinyl alcohol) gels doped with terbium complex. J Colloid Interface Sci 477:34–39. https://doi.org/10.1016/j.jcis.2016.05.032

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Q, Zhang L, Van Vliet K, Miserez A, Holten-Andersen N (2018) White light-emitting multistimuli-responsive hydrogels with lanthanides and carbon dots. ACS Appl Mater Interfaces 10(12):10409–10418. https://doi.org/10.1021/acsami.7b17016

    Article  CAS  PubMed  Google Scholar 

  12. Zhao Y, Shi C, Yang X, Shen B, Sun Y, Chen Y, Xu X, Sun H, Yu K, Yang B, Lin Q (2016) pH- and temperature-sensitive hydrogel nanoparticles with dual photoluminescence for bioprobes. ACS Nano 10(6):5856–5863. https://doi.org/10.1021/acsnano.6b00770

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Zhang Y, Zhang J, Huang L, Liu J, Li Y, Zhang G, Kundu SC, Wang L (2014) Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel. Sci Rep 4:7064–7074. https://doi.org/10.1038/srep07064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Z, Hou Z, Fan H, Li H (2017) Organic-inorganic hierarchical self-assembly into robust luminescent supramolecular hydrogel. Adv Funct Mater 27(2):1604379–1604386. https://doi.org/10.1002/adfm.201604379

    Article  CAS  Google Scholar 

  15. Shao J, Yu Q, Wang S, Hu Y, Guo Z, Kang K, Ji X (2019) Poly(vinyl alcohol)–carbon nanodots fluorescent hydrogel with superior mechanical properties and sensitive to detection of Iron(III) ions. Macromol Mater Eng 304:1900326. https://doi.org/10.1002/mame.201900326

    Article  CAS  Google Scholar 

  16. Chen B, Xie H, Wang S, Guo Z, Hu Y, Xie H (2019) Multicolor photoluminescent carbon nanodots regulated by degree of oxidation for multicolor patterning, invisible inks, and detection of metal ions. J Nanopart Res 21(4):76–86. https://doi.org/10.1007/s11051-019-4515-4

    Article  CAS  Google Scholar 

  17. Yang D, Wang Y, Li Z, Yang X, Fei C, Peng L, Li H (2018) Color-tunable luminescent hydrogels with tough mechanical strength and self-healing ability. J Mater Chem C 6(5):1153–1159. https://doi.org/10.1039/C7TC05593E

    Article  CAS  Google Scholar 

  18. Martinez-Calvo M, Kotova O, Mobius ME, Bell AP, McCabe T, Boland JJ, Gunnlaugsson T (2015) Healable luminescent self-assembly supramolecular metallogels possessing lanthanide (Eu/Tb) dependent rheological and morphological properties. J Am Chem Soc 137(5):1983–1992. https://doi.org/10.1021/ja511799n

    Article  CAS  PubMed  Google Scholar 

  19. Buenzli J-CG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110(5):2729–2755. https://doi.org/10.1021/cr900362e

    Article  CAS  Google Scholar 

  20. Weng G, Thanneeru S, He J (2018) Dynamic coordination of eu-iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv Mater 30(11):1706526–1706532. https://doi.org/10.1002/adma.201706526

    Article  CAS  Google Scholar 

  21. Hu M, Gu X, Hu Y, Wang T, Huang J, Wang C (2016) Low chemically cross-linked PAM/C-dot hydrogel with robustness and superstretchability in both as-prepared and swelling equilibrium states. Macromolecules 49(8):3174–3183. https://doi.org/10.1021/acs.macromol.5b02352

    Article  CAS  Google Scholar 

  22. Wu L, Chen G, Li Z (2017) Layered rare-earth hydroxide/polyacrylamide nanocomposite hydrogels with highly tunable photoluminescence. Small 13(23):1604070–1604076. https://doi.org/10.1002/smll.201604070

    Article  CAS  Google Scholar 

  23. Kim H, Young Chang J (2014) Erratum: White light emission from a mixed organogel of lanthanide(iii)-containing organogelators. RSC Adv 4(82):43549–43549. https://doi.org/10.1039/c4ra90013h

    Article  CAS  Google Scholar 

  24. Chen P, Li Q, Grindy S, Holten-Andersen N (2015) White-light-emitting lanthanide metallogels with tunable luminescence and reversible stimuli-responsive properties. J Am Chem Soc 137(36):11590–11593. https://doi.org/10.1021/jacs.5b07394

    Article  CAS  PubMed  Google Scholar 

  25. El-Shamy AG, Zayied HSS (2020) New polyvinyl alcohol/carbon quantum dots (PVA/CQDs) nanocomposite films: structural, optical and catalysis properties. Synth Met 259:116218–116231. https://doi.org/10.1016/j.synthmet.2019.116218

    Article  CAS  Google Scholar 

  26. El-Shamy AG (2019) Novel conducting PVA/Carbon quantum dots (CQDs) nanocomposite for high anti-electromagnetic wave performance. J Alloys Compd 810(25):151940. https://doi.org/10.1016/j.jallcom.2019.151940

    Article  CAS  Google Scholar 

  27. El-Shamy AG, Attia W, Abd El-Kader KM (2014) The optical and mechanical properties of PVA-Ag nanocomposite films. J Alloys Compd 590:309–312. https://doi.org/10.1016/j.jallcom.2013.11.203

    Article  CAS  Google Scholar 

  28. Kumar AC, Mishra AK (2007) 1-Naphthol as an excited state proton transfer fluorescent probe for sensing bound-water hydration of polyvinyl alcohol. Talanta 71(5):2003–2006. https://doi.org/10.1016/j.talanta.2006.09.010

    Article  CAS  PubMed  Google Scholar 

  29. Fan H, Wang J, Jin Z (2018) Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer-tannic acid multiple hydrogen bonds. Macromolecules 51(5):1696–1705. https://doi.org/10.1021/acs.macromol.7b02653

    Article  CAS  Google Scholar 

  30. Nam HG, Nam MG, Yoo PJ, Kim JH (2019) Hydrogen bonding-based strongly adhesive coacervate hydrogels synthesized using poly(N-vinylpyrrolidone) and tannic acid. Soft Matter 15(4):785–791. https://doi.org/10.1039/c8sm02144a

    Article  CAS  PubMed  Google Scholar 

  31. Yang P, Zhu Z, Zhang T, Zhang W, Chen W, Cao Y, Chen M, Zhou X (2019) Orange-emissive carbon quantum dots: toward application in wound ph monitoring based on colorimetric and fluorescent changing. Small 15(44):1902823–1902833. https://doi.org/10.1002/smll.201902823

    Article  CAS  Google Scholar 

  32. Li QF, Yue D, Lu W, Zhang X, Li C, Wang Z (2015) Hybrid luminescence materials assembled by [Ln(DPA)3](3-) and mesoporous host through ion-pairing interactions with high quantum efficiencies and long lifetimes. Sci Rep 5:8385–8393. https://doi.org/10.1038/srep08385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu W, Čépe K, Zbořil R (2016) UV light-switchable transparent polymer films and invisible luminescent inks based on carbon dots and lanthanide complexes. J Mater Chem C 4(30):7253–7259. https://doi.org/10.1039/C6TC01546H

    Article  CAS  Google Scholar 

  34. Chen B, Xie H, Wang S, Guo Z, Hu Y, Xie H (2019) UV light-tunable fluorescent inks and polymer hydrogel films based on carbon nanodots and lanthanide for enhancing anti-counterfeiting. Lumin J Biol Chem Lumin 34(4):437–443. https://doi.org/10.1002/bio.3636

    Article  CAS  Google Scholar 

  35. Fang JF, Ma DG (2003) Efficient red organic light-emitting devices based on a europium complex. Appl Phys Lett 83(19):4041–4043. https://doi.org/10.1063/1.1626022

    Article  CAS  Google Scholar 

  36. Adachi C, Baldo MA, Forrest SR (2000) Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host. J Appl Phys 87(11):8049–8055. https://doi.org/10.1063/1.373496

    Article  CAS  Google Scholar 

  37. Pei J, Liu XL, Yu WL, Lai YH, Niu YH, Cao Y (2002) Efficient energy transfer to achieve narrow bandwidth red emission from Eu3+-grafting conjugated polymers. Macromolecules 35(19):7274–7280. https://doi.org/10.1021/ma020529b

    Article  CAS  Google Scholar 

  38. Chen YN, Peng L, Liu T, Wang Y, Wang H (2016) Poly(vinyl alcohol)-tannic acid hydrogels with excellent mechanical properties and shape memory behaviors. ACS Appl Mater Interfaces 8(40):27199–27206. https://doi.org/10.1021/acsami.6b08374

    Article  CAS  Google Scholar 

  39. Shao C, Meng L, Wang M, Cui C, Wang B, Han CR, Xu F, Yang J (2019) Mimicking dynamic adhesiveness and strain-stiffening behavior of biological tissues in tough and self-healable cellulose nanocomposite hydrogels. ACS Appl Mater Interfaces 6(11):5885–5895. https://doi.org/10.1021/acsami.8b21588

    Article  CAS  Google Scholar 

  40. Hu Z, Berry RM, Pelton R, Cranston ED (2017) One-pot water-based hydrophobic surface modification of cellulose nanocrystals using plant polyphenols. ACS Sustain Chem Eng 5(6):5018–5026. https://doi.org/10.1021/acssuschemeng.7b00415

    Article  CAS  Google Scholar 

  41. Hu T, Liu Q, Gao T, Dong K, Wei G, Yao J (2018) Facile preparation of tannic acid-poly(vinyl alcohol)/sodium alginate hydrogel beads for methylene blue removal from simulated solution. ACS Omega 3(7):7523–7531. https://doi.org/10.1021/acsomega.8b00577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ge W, Cao S, Shen F, Wang Y, Ren J, Wang X (2019) Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels. Carbohydr Polym 224:115147–115155. https://doi.org/10.1016/j.carbpol.2019.115147

    Article  CAS  PubMed  Google Scholar 

  43. Kumar A, Negi YS, Bhardwaj NK, Choudhary V Synthesis and characterization of methylcellulose/PVA based porous composite. Carbohydr Polym 88(4):1364–1372. https://doi.org/10.1016/j.ijbiomac.2016.10.085

  44. Kumar A, Lee Y, Kim D, Rao KM, Kim J, Park S, Haider A, Lee DH, Han SS (2017) Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. Int J Biol Macromol 95:962–973. https://doi.org/10.1016/j.ijbiomac.2016.10.085

    Article  CAS  PubMed  Google Scholar 

  45. Peng M, Xiao G, Tang X, Zhou Y (2014) Hydrogen-bonding assembly of rigid-rod poly(p-sulfophenylene terephthalamide) and flexible-chain poly(vinyl alcohol) for transparent, strong, and tough molecular composites. Macromolecules 47(23):8411–8419. https://doi.org/10.1021/ma501590x

    Article  CAS  Google Scholar 

  46. Hong KH (2016) Polyvinyl alcohol/tannic acid hydrogel prepared by a freeze-thawing process for wound dressing applications. Polym Bull 74(7):1–12. https://doi.org/10.1007/s00289-016-1868-z

    Article  CAS  Google Scholar 

  47. Reséndiz-Hernández PJ, Rodríguez-Fernández OS, García-Cerda LA (2008) Synthesis of poly(vinyl alcohol)–magnetite ferrogel obtained by freezing–thawing technique. J Magn Magn Mater 320(14):e373–e376. https://doi.org/10.1016/j.jmmm.2008.02.073

    Article  CAS  Google Scholar 

  48. Spoljaric S, Salminen A, Luong ND, Seppälä J (2014) Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 56(1):105–117. https://doi.org/10.1016/j.eurpolymj.2014.03.009

    Article  CAS  Google Scholar 

  49. Qin Y, Wang J, Qiu C, Xu X, Jin Z (2019) A dual cross-linked strategy to construct moldable hydrogels with high stretchability, good self-recovery, and self-healing capability. J Agric Food Chem 67(14):3966–3980. https://doi.org/10.1021/acs.jafc.8b05147

    Article  CAS  PubMed  Google Scholar 

  50. Ding Q, Xu X, Yue Y, Mei C, Huang C, Jiang S, Wu Q, Han J (2018) Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl Mater Interfaces 10(33):27987–28002. https://doi.org/10.1021/acsami.8b09656

    Article  CAS  PubMed  Google Scholar 

  51. Reckmeier CJ, Wang Y, Zboril R, Rogach AL (2016) Influence of doping and temperature on solvatochromic shifts in optical spectra of carbon dots. J Phys Chem C 120(19):10591–10604. https://doi.org/10.1021/acs.jpcc.5b12294

    Article  CAS  Google Scholar 

  52. Meng Y, Ye L, Coates P, Twigg P (2018) In situ cross-linking of poly(vinyl alcohol)/graphene oxide-polyethylene glycol nanocomposite hydrogels as artificial cartilage replacement: intercalation structure, unconfined compressive behavior, and biotribological behaviors. J Phys Chem C 122(5):3157–3167. https://doi.org/10.1021/acs.jpcc.7b12465

    Article  CAS  Google Scholar 

  53. Yang W, Shao B, Liu T, Zhang Y, Huang R, Chen F, Fu Q (2018) Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl Mater Interfaces 10(9):8245–8257. https://doi.org/10.1021/acsami.7b18700

    Article  CAS  PubMed  Google Scholar 

  54. Shao J, Zhang Z, Zhao S, Wang S, Guo Z, Xie H, Hu Y (2019) Self-healing hydrogel of poly (vinyl alcohol)/agarose with robust mechanical property. Starch/Staerke 71(5-6):1800281–1800290. https://doi.org/10.1002/star.201800281

    Article  CAS  Google Scholar 

  55. Xu J, Jin R, Duan L, Ren X, Gao G (2019) Tough, adhesive and conductive polysaccharide hydrogels mediated by ferric solution. Carbohydr Polym 211:1–10. https://doi.org/10.1016/j.carbpol.2019.01.091

    Article  CAS  PubMed  Google Scholar 

  56. Dutta A, Maity S, Das RK (2018) A highly stretchable, tough, self-healing, and thermoprocessable polyacrylamide–chitosan supramolecular hydrogel. Macromol Mater Eng 303(12):1800322–1800330. https://doi.org/10.1002/mame.201800322

    Article  CAS  Google Scholar 

  57. Wang M, Li X, Hua W, Deng L, Li P, Zhang T, Wang X (2018) Superelastic three-dimensional nanofiber-reconfigured spongy hydrogels with superior adsorption of lanthanide ions and photoluminescence. Chem Eng J 348:95–108. https://doi.org/10.1016/j.cej.2018.04.135

    Article  CAS  Google Scholar 

  58. Si Y, Fu Q, Wang X, Zhu J, Yu J, Sun G, Ding B (2015) Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 9(4):3791–3799. https://doi.org/10.1021/nn506633b

    Article  CAS  PubMed  Google Scholar 

  59. Sun B, Zhou Z, Wu T, Chen W, Li D, Zheng H, El-Hamshary H, Al-Deyab SS, Mo X, Yu Y (2017) Development of nanofiber sponges-containing nerve guidance conduit for peripheral nerve regeneration in vivo. ACS Appl Mater Interfaces 9(32):26684–26696. https://doi.org/10.1021/acsami.7b06707

    Article  CAS  PubMed  Google Scholar 

  60. Kim JG, Choi TJ, Chang JY (2016) Homogenized electrospun nanofiber reinforced microporous polymer sponge. Chem Eng J 306:242–250. https://doi.org/10.1016/j.cej.2016.07.055

    Article  CAS  Google Scholar 

  61. Cantournet S, Desmorat R, Besson J (2009) Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model. Int J Solids Struct 46(11-12):2255–2264. https://doi.org/10.1016/j.ijsolstr.2008.12.025

    Article  CAS  Google Scholar 

  62. Lu J, Xu D, Wei J, Yan S, Xiao R (2017) Superoleophilic and flexible thermoplastic polymer nanofiber aerogels for removal of oils and organic solvents. ACS Appl Mater Interfaces 9(30):25533–25541. https://doi.org/10.1021/acsami.7b07004

    Article  CAS  PubMed  Google Scholar 

  63. Deuber F, Mousavi S, Federer L, Adlhart C (2017) Amphiphilic nanofiber-based aerogels for selective liquid absorption from electrospun biopolymers. Adv Mater Interfaces 4(12):1700065–1700071. https://doi.org/10.1002/admi.201700065

    Article  CAS  Google Scholar 

  64. Deng Y, Hussain I, Kang M, Li K, Yao F, Liu S, Fu G (2018) Self-recoverable and mechanical-reinforced hydrogel based on hydrophobic interaction with self-healable and conductive properties. Chem Eng J 353:900–910. https://doi.org/10.1016/j.cej.2018.07.187

    Article  CAS  Google Scholar 

Download references

Funding

This work received financial support from the National Natural Science Foundation of China (41576098, 81773483), the Science and Technology Department of Zhejiang Province of China (2016C33176, LGF18B070002), the Natural Science Foundation of Ningbo (2017A610231, 2017A610228), and the State Key Laboratory for Quality and Safety of Agro-products (ZS20190101). This research was also sponsored by K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.67 mb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Shao, J., Wang, S. et al. A dual-crosslinking strategy for building photoluminescence hydrogel with toughness, self-recovery, and two-color tunability. Colloid Polym Sci 298, 1715–1727 (2020). https://doi.org/10.1007/s00396-020-04756-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04756-8

Keywords

Navigation