Skip to main content
Log in

Computer simulations of comb-like macromolecules with responsive diblock copolymer side chains

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Comb-like macromolecules having diblock copolymer side chains with inner (grafted to the backbone) responsive block and outer soluble block were studied using dissipative particle dynamics simulations. Like for thermoresponsive polymers, responsiveness of the inner block means variation of its solubility upon changing of external conditions leading to variation of the solvent quality. The collapse of single copolymers (regime of infinite dilution) and their self-assembly in solution were examined. The effects of grafting density and the composition of the side chains were considered. The results reveal three distinct regimes which are characterized by the different balance of interactions between solvophilic and solvophobic groups and by the number of intramolecular clusters in the single macromolecules. The solvent quality, at which the transition between the regimes occurs, depends on the molecular architecture. In the case of macromolecular ensemble, the increase in the grafting density not only requires poorer solvent to induce intermolecular aggregation but also changes the shape of the aggregates (micelles). Namely, the grafted macromolecules can form the continuous or branched cluster, as well as cylindrical micelles. In turn, the change of the side chain composition strongly influences the stability of the solution: the longer the responsive block, the sooner the macromolecules precipitate upon the block collapse.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Potemkin II, Palylin VV (2009) Comblike macromolecules. Polym Sci Ser A 51(2):123–149. https://doi.org/10.1134/S0965545X09020011

    Article  Google Scholar 

  2. Birshtein TM, Borisov OV, Zhulina EB, Khokhlov AR, Yurasova TA (1987) Conformations of comb-like macromolecules. Polym Sci USSR 29(6):1293–1300. https://doi.org/10.1016/0032-3950(87)90374-1

    Article  Google Scholar 

  3. Fredrickson GH (1993) Surfactant-induced lyotropic behavior of flexible polymer solutions. Macromolecules 26(11):2825–2831. https://doi.org/10.1021/ma00063a029

    Article  CAS  Google Scholar 

  4. Xie G, Martinez MR, Olszewski M, Sheiko SS, Matyjazewski K (2019) Molecular bottlebrushes as novel materials. Biomacromolecules 20(1):27–54. https://doi.org/10.1021/acs.biomac.8b01171

    Article  CAS  PubMed  Google Scholar 

  5. Potemkin II, Khokhlov AR, Reineker P (2001) Stiffness and conformations of molecular bottle-brushes strongly adsorbed on a flat surface. Eur Phys J E 4:93–101. https://doi.org/10.1007/s101890170147

    Article  CAS  Google Scholar 

  6. Potemkin II (2006) Persistence length of comblike polymers strongly adsorbed on a flat surface. Macromolecules 39(21):7178–7180. https://doi.org/10.1021/ma061235j

    Article  CAS  Google Scholar 

  7. Potemkin II, Popov KI (2006) Effect of grafting density of the side chains on spontaneous curvature and persistence length of 2D comb-like macromolecules. J Chem Phys 129(12):124901. https://doi.org/10.1063/1.2980050

    Article  CAS  Google Scholar 

  8. Potemkin II (2003) Elasticity driven spontaneous curvature of a 2D comb-like polymer with repulsive interactions in the side chains. Eur Phys J E 12(2):207–210. https://doi.org/10.1140/epje/i2003-10061-3

    Article  CAS  PubMed  Google Scholar 

  9. Potemkin II, Khokhlov AR, Prokhorova SA, Sheiko SS, Möller M, Beers KL, Matyjaszewski K (2004) Spontaneous curvature of comb-like polymers at a flat interface. Macromolecules 37(10):3918–3923. https://doi.org/10.1021/ma021519d

    Article  CAS  Google Scholar 

  10. Lee H, Pietrasik J, Sheiko SS, Matyjazewski K (2010) Stimuli-responsive molecular brushes. Prog Polym Sci 35(1-2):24–44. https://doi.org/10.1016/j.progpolymsci.2009.11.002

    Article  CAS  Google Scholar 

  11. Wang D, Huan X, Zhu L, Liu J, Qiu F, Yan F, Zhu X (2012) Salt/pH dual-responsive supramolecular brush copolymer micelles with molecular recognition of nucleobases for drug delivery. RSC Adv 2(31):11953–11962. https://doi.org/10.1039/C2RA21923A

    Article  CAS  Google Scholar 

  12. Luo H, Santos JL, Herrea-Alonso M (2014) Toroidal structures from brush amphiphiles. Chem Commun 50(5):536–538. https://doi.org/10.1039/C3CC46834H

    Article  CAS  Google Scholar 

  13. Verduzco R, Li X, Pesek SL, Stein GE (2015) Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem Soc Rev 44(8):2405–2420. https://doi.org/10.1039/C4CS00329B

    Article  CAS  PubMed  Google Scholar 

  14. Fenyves R, Schmutz HIJ, Bright FV, Rzaev J (2014) Aqueous self-assembly of giant bottlebrush block copolymer surfactants as shape-tunable building blocks. J Am Chem Soc 136(21):7762–7770. https://doi.org/10.1021/ja503283r

    Article  CAS  PubMed  Google Scholar 

  15. Szymusiak M, Kalkowski J, Luo H, Donovan AJ, Zhang P, Liu C, Shang W, Irving T, Herrera-Alonso M, Liu Y (2017) Core−shell structure and aggregation number of micelles composed of amphiphilic block copolymers and amphiphilic heterografted polymer brushes determined by small-angle X-ray scattering. ACS Macro Lett 6(9):1005–1012. https://doi.org/10.1021/acsmacrolett.7b00490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Du J-Z, Tang L-Y, Song W-J, Shi Y, Wang J (2009) Evaluation of polymeric micelles from brush polymer with poly(ε-caprolactone)-b-poly(ethylene glycol) side chains as drug carrier. Biomacromolecules 10(8):2169–2174. https://doi.org/10.1021/bm900345m

    Article  CAS  PubMed  Google Scholar 

  17. Zhao P, Liu l, Feng X, Wang C, Shuai X, Chen Y. (2012) Molecular nanoworm with PCL core and PEO shell as a non-spherical carrier for drug delivery. Macromol Rapid Commun 33(16):1351–1355. https://doi.org/10.1002/marc.201200172

    Article  CAS  PubMed  Google Scholar 

  18. Zhang N, Huber S, Schulz A, Luxenhofer R, Jordan R (2009) Cylindrical molecular brushes of poly(2-oxazoline)s from 2-Isopropenyl-2-oxazoline. Macromolecules 42(6):2215–2221. https://doi.org/10.1021/ma802627y

    Article  CAS  Google Scholar 

  19. Zhang N, Luxenhofer R, Jordan R (2012) Thermoresponsive poly(2-oxazoline) molecular brushes by living ionic polymerization: modulation of the cloud point by random and block copolymer pendant chains. Macromol Chem Phys 213(18):1963–1969. https://doi.org/10.1002/macp.201200261

    Article  CAS  Google Scholar 

  20. Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R (2012) Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun 33(19):1613–1631. https://doi.org/10.1002/marc.201200354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gieseler D, Jordan R (2015) Poly(2-oxazoline) molecular brushes by grafting through of poly(2-oxazoline)methacrylates with aqueous ATRP. Polym Chem 6(25):4678–4689. https://doi.org/10.1039/C5PY00561B

    Article  CAS  Google Scholar 

  22. Foster JC, Varlas S, Couturaud B, Coe Z, O’Reilly RK (2019) Getting into shape: reflections on a new generation of cylindrical nanostructures’ self-assembly using polymer building blocks. J Am Chem Soc 141(7):2742–2753. https://doi.org/10.1021/jacs.8b08648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Polotsky A, Charlaganov M, Xu Y, Leermakers FAM, Daoud M, Müller AHE, Tomonori D, Borisov O (2008) Pearl-necklace structures in core-shell molecular brushes: experiments, Monte Carlo simulations, and self-consistent field modeling. Macromolecules 41(11):4020–4028. https://doi.org/10.1021/ma800125q

    Article  CAS  Google Scholar 

  24. Košovan P, Kuldová J, Limpouchová Z, Procházka K, Zhulina EB, Borisov OV (2009) Amphiphilic graft copolymers in selective solvents: molecular dynamics simulations and scaling theory. Macromolecules 42(17):6748–6760. https://doi.org/10.1021/ma900768p

    Article  CAS  Google Scholar 

  25. Theodorakis PE, Paul W, Binder K (2010) Interplay between chain collapse and microphase separation in bottle-brush polymers with two types of side chains. Macromolecules 43(11):5137–5148. https://doi.org/10.1021/ma100414u

    Article  CAS  Google Scholar 

  26. Theodorakis PE, Paul W, Binder K (2011) Analysis of the cluster formation in two-component cylindrical bottle-brush polymers under poor solvent conditions. A Simulation Study. Eur Phys J E 34:52. https://doi.org/10.1140/epje/i2011-11052-5

    Article  CAS  PubMed  Google Scholar 

  27. Chang H-Y, Lin Y-L, Sheng Y-J, Tsao H-K (2013) Structural characteristics and fusion pathways of onion-like multilayered polymersome formed by amphiphilic comb-like graft copolymers. Macromolecules 46(14):5644–5656. https://doi.org/10.1021/ma400667n

    Article  CAS  Google Scholar 

  28. Polovnikov KE, Potemkin II (2017) Effect of architecture on micelle formation and liquid-crystalline ordering in solutions of block copolymers comprising flexible and rigid blocks: rod-coil vs Y-shaped vs comblikecCopolymers. J Phys Chem B 121(43):10180–10189. https://doi.org/10.1021/acs.jpcb.7b09127

    Article  CAS  PubMed  Google Scholar 

  29. Lyubimov I, Wessels MG, Jayaraman A (2018) Molecular dynamics simulation and PRISM theory study of assembly in solutions of amphiphilic bottlebrush block copolymers. Macromolecules 51(19):7586–7599. https://doi.org/10.1021/acs.macromol.8b01535

    Article  CAS  Google Scholar 

  30. Bejagam KK, Singh SK, Ahn R, Deshmukh SA (2019) Unraveling the conformations of backbone and side chains in thermosensitive bottlebrush polymers. Macromolecules 52(23):9398–9408. https://doi.org/10.1021/acs.macromol.9b01021

    Article  CAS  Google Scholar 

  31. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160. https://doi.org/10.1209/0295-5075/19/3/001

    Article  Google Scholar 

  32. Español P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30(4):191–196. https://doi.org/10.1209/0295-5075/30/4/001

    Article  Google Scholar 

  33. Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435. https://doi.org/10.1063/1.474784

    Article  CAS  Google Scholar 

  34. Yong X, Kuksenok O, Matyjaszewski K, Balazs AC (2013) Harnessing interfacially-active nanorods to regenerate severed polymer gels. Nano Lett 13(12):6269–6274. https://doi.org/10.1021/nl403855k

    Article  CAS  PubMed  Google Scholar 

  35. LAMMPS Molecular Dynamics Simulator http://lammps.sandia.gov/

  36. Rovigatti L, Capone B, Likos CN (2016) Soft self-assembled nanoparticles with temperature-dependent properties. Nanoscale 8(6):3288–3295. https://doi.org/10.1039/C5NR04661K

    Article  CAS  PubMed  Google Scholar 

  37. Sheng Y-J, Nung C-H, Tsao H-K (2006) Morphologies of star-block copolymers in dilute solutions. J Phys Chem B 110(43):21643–21650. https://doi.org/10.1021/jp0642950

    Article  CAS  PubMed  Google Scholar 

  38. Guskova OA, Seidel C (2011) Mesoscopic simulations of morphological transitions of stimuli-responsive diblock copolymer brushes. Macromolecules 44(3):671–682. https://doi.org/10.1021/ma102349k

    Article  CAS  Google Scholar 

  39. Grosberg AY, Khokhlov AR (1994) Statistical Physics of Macromolecules. AIP, Woodbury

    Google Scholar 

  40. Jiang T, Wang L, Lin J (2013) Mechanical properties of designed multicompartment gels formed by ABC graft copolymers. Langmuir 29(39):12298–12306. https://doi.org/10.1021/la403098p

    Article  CAS  PubMed  Google Scholar 

  41. Li Z, Dormidontova EE (2010) Kinetics of diblock copolymer micellization by dissipative particle dynamics. Macromolecules 43(7):3521–3531. https://doi.org/10.1021/ma902860j

    Article  CAS  Google Scholar 

  42. Kang J-J, Shehu K, Sachse C, Jung FA, Ko C-H, Barnsley LC, Jordan R, Papadakis CMA (2020) molecular brush with thermoresponsive poly(2-ethyl-2-oxazoline) side chains: a structural investigation. Colloid Polym Sci. https://doi.org/10.1007/s00396-020-04704-6

  43. Gumerov RA, Rudov AA, Richtering W, Möller M, Potemkin II (2017) Amphiphilic arborescent copolymers and microgels: from unimolecular micelles in a selective solvent to the stable monolayers of variable density and nanostructure at a liquid interface. ACS Appl Mater Interfaces 9(37):31302–31316. https://doi.org/10.1021/acsami.7b00772

    Article  CAS  PubMed  Google Scholar 

  44. Voevodin VV, Antonov AS, Nikitenko DA, Shvets PA, Sobolev SI, Sidorov IY, Stefanov КS, Voevodin VV, Zhumatiy SA (2019) Supercomputer Lomonosov-2: large scale, deep monitoring and fine analytics for the user community. Supercomput Front Innov 6(2):4–11. https://doi.org/10.14529/jsfi190201

    Article  Google Scholar 

Download references

Acknowledgments

The research was performed using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University [44].

Funding

This study received financial support from the Russian Foundation for Basic Research, project No. 20-53-12023, in the framework of the Memorandum of Understanding between the Deutsche Forschungsgemeinschaft and the Russian Foundation for Basic Research and support from the Government of the Russian Federation within Act 211, contract No. 02.A03.21.0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor I. Potemkin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumerov, R.A., Potemkin, I.I. Computer simulations of comb-like macromolecules with responsive diblock copolymer side chains. Colloid Polym Sci 299, 407–418 (2021). https://doi.org/10.1007/s00396-020-04753-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04753-x

Keywords

Navigation