Skip to main content
Log in

Temperature-responsive and multi-responsive grafted polymer brushes with transitions based on critical solution temperature: synthesis, properties, and applications

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Temperature responsivity of polymer brushes may be driven by different mechanisms, from which the lower critical solution temperature (LCST) is the most famous one. The using of the grafted temperature-responsive polymer brushes based on LCST opens numerous opportunities for fabrication of “smart” or responsive surfaces. In this review, we try to join information on thermoresponsive and multi-responsive grafted polymer brushes with transitions based on LCST. The overwhelming majority of previously reported temperature-responsive grafted polymer brush coatings were based on PNIPAM and POEGMA, despite the fact that a wide range of other thermoresponsive polymers demonstrate similar properties. In this work, we not only give the detailed account for fabrication, mechanisms of action, and applications of well-known PNIPAM- and POEGMA-grafted brush coatings but also point to other types of thermoresponsive grafted brushes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kieviet BD, Schön PM, Vancso GJ (2014) Stimulus-responsive polymers and other functional polymer surfaces as components in glass microfluidic channels. Lab Chip 14:4159–4170. https://doi.org/10.1039/C4LC00784K

    Article  CAS  PubMed  Google Scholar 

  2. Peng S, Bhushan B (2012) Smart polymer brushes and their emerging applications. RSC Adv 2:8557–8578. https://doi.org/10.1039/C2RA20451G

    Article  CAS  Google Scholar 

  3. Budkowski A, Klein J, Fetters LJ (1995) Brush formation by symmetric and by highly asymmetric diblock copolymers at homopolymer interfaces. Macromolecules 28:8571–8578. https://doi.org/10.1021/ma00129a016

    Article  CAS  Google Scholar 

  4. Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized. Prog Polym Sci 25:677–710. https://doi.org/10.1016/S0079-6700(00)00012-5

    Article  CAS  Google Scholar 

  5. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113. https://doi.org/10.1038/nmat2614

    Article  CAS  PubMed  Google Scholar 

  6. Zhou F, Huck WTS (2006) Surface grafted polymer brushes as ideal building blocks for “smart” surfaces. Phys Chem Chem Phys 8:3815–3823. https://doi.org/10.1039/B606415A

    Article  CAS  PubMed  Google Scholar 

  7. Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA (2017) Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem Rev 117:1105–1318. https://doi.org/10.1021/acs.chemrev.6b00314

    Article  CAS  PubMed  Google Scholar 

  8. Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok HA (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109:5437–5527. https://doi.org/10.1021/cr900045a

    Article  CAS  PubMed  Google Scholar 

  9. Budkowski A (1999) Interfacial phenomena in thin polymer films: phase coexistence and segregation. Adv Polym Sci 148:1. https://doi.org/10.1007/3-540-48836-7_1

    Article  CAS  Google Scholar 

  10. Bhat RR, Tomlinson MR, Wu T, Efimenko K, Genzer J (2006) Surface-grafted polymer gradients: formation, characterization, and applications. Adv Polym Sci 198:51–124. https://doi.org/10.1007/12_060

    Article  CAS  Google Scholar 

  11. Wu T, Efimenko K, Vlček P, Šubr V, Genzer J (2003) Formation and properties of anchored polymers with a gradual variation of grafting densities on flat substrates. Macromolecules 36:2448–2453. https://doi.org/10.1021/ma0257189

    Article  CAS  Google Scholar 

  12. Edmondson S, Osborne VL, Huck WTS (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33:14–22. https://doi.org/10.1039/B210143M

    Article  CAS  PubMed  Google Scholar 

  13. Ohno K, Morinaga T, Koh K, Tsujii Y, Fukuda T (2005) Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules 38:2137–2142. https://doi.org/10.1021/ma048011q

    Article  CAS  Google Scholar 

  14. Moraes J, Ohno K, Gody G, Maschmeyer T, Perrier S (2013) The synthesis of well-defined poly(vinylbenzyl chloride)-grafted nanoparticles via RAFT polymerization. Beilstein J Org Chem 9:1226–1234. https://doi.org/10.3762/bjoc.9.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heeb R, Bielecki RM, Lee S, Spencer ND (2009) Room-temperature, aqueous-phase fabrication of poly(methacrylic acid) brushes by UV-LED-induced, controlled radical polymerization with high selectivity for surface-bound species. Macromolecules 42:9124–9132. https://doi.org/10.1021/ma901607w

    Article  CAS  Google Scholar 

  16. Ladmiral V, Morinaga T, Ohno K, Fukuda T, Tsujii Y (2009) Synthesis of monodisperse zinc sulfide particles grafted with concentrated polystyrene brush by surface-initiated nitroxide-mediated polymerization. Eur Polym J 45:2788–2796. https://doi.org/10.1016/j.eurpolymj.2009.07.004

    Article  CAS  Google Scholar 

  17. Kostruba A, Ohar M, Kulyk B, Zolobko O, Stetsyshyn Y (2013) Surface modification by grafted sensitive polymer brushes: an ellipsometric study of their properties. Appl Surf Sci 276:340–346. https://doi.org/10.1016/j.apsusc.2013.03.094

    Article  CAS  Google Scholar 

  18. Bratychak M, Brostow W, Donchak V (2002) Functional peroxides and peroxy oligoesters on the basis of pyromellitic dianhydride. Mater Res Innov 5:250–256. https://doi.org/10.1007/s10019-002-0166-6

    Article  CAS  Google Scholar 

  19. Stetsyshyn Y, Kostruba A, Harhay K, Donchak V, Ohar H, Savaryn V, Kulyk B, Ripak L, Nastishin YA (2015) Multifunctional cholesterol-based peroxide for modification of amino-terminated surfaces: synthesis, structure and characterization of grafted layer. Appl Surf Sci 347:299–306. https://doi.org/10.1016/j.apsusc.2015.04.110

    Article  CAS  Google Scholar 

  20. Zhu B, Edmondson S (2012) ARGET ATRP: procedure for PMMA polymer brush growth. Controlled radical polymerization guide. Aldrich Materials Science, Sigma-Aldrich, pp 15–17

    Google Scholar 

  21. Awsiuk K, Stetsyshyn Y, Raczkowska J, Lishchynskyi O, Dąbczyński P, Kostruba A, Ohar H, Shymborska Y, Nastyshyn S, Budkowski A (2019) Temperature-controlled orientation of proteins on temperature-responsive grafted polymer brushes: poly(butyl methacrylate) vs poly(butyl acrylate): morphology, wetting, and protein adsorption. Biomacromolecules 20:2185–2197. https://doi.org/10.1021/acs.biomac.9b00030

    Article  CAS  PubMed  Google Scholar 

  22. Stetsyshyn Y, Raczkowska J, Lishchynskyi O, Awsiuk K, Zemla J, Dąbczyński P, Kostruba A, Harhay K, Ohar H, Orzechowska B, Panchenko Y, Vankevych P, Budkowski A (2018) Glass transition in temperature-responsive poly(butyl methacrylate) grafted polymer brushes. Impact of thickness and temperature on wetting, morphology, and cell growth. J Mater Chem B 6:1613–1621. https://doi.org/10.1039/C8TB00088C

    Article  CAS  PubMed  Google Scholar 

  23. Stetsyshyn Y, Raczkowska J, Budkowski A, Awsiuk K, Kostruba A, Nastyshyn S, Harhay K, Lychkovskyy E, Ohar H, Nastishin Y (2016) Cholesterol-based grafted polymer brushes as alignment coating with temperature-tuned anchoring for nematic liquid crystals. Langmuir 32:11029–11038. https://doi.org/10.1021/acs.langmuir.6b02946

    Article  CAS  PubMed  Google Scholar 

  24. Raczkowska J, Stetsyshyn Y, Awsiuk K, Lekka M, Marzec M, Harhay K, Ohar H, Ostapiv D, Sharan M, Yaremchuk I, Bodnar Y, Budkowski A (2017) Temperature-responsive grafted polymer brushes obtained from renewable sources with potential application as substrates for tissue engineering. Appl Surf Sci 407:546–554. https://doi.org/10.1016/j.apsusc.2017.03.001

    Article  CAS  Google Scholar 

  25. Roy D, Brooks W, Sumerlin B (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42:7214–7243. https://doi.org/10.1039/C3CS35499G

    Article  CAS  PubMed  Google Scholar 

  26. Aseyev V, Tenhu H, Winnik F (2010) Non-ionic thermoresponsive polymers in water. In: Müller AHE, Borisov O (eds) Self organized nanostructures of amphiphilic block copolymers II. Springer, Berlin Heidelberg, pp 29–89

    Chapter  Google Scholar 

  27. Plunkett K, Zhu X, Moore J, Leckband D (2006) PNIPAM chain collapse depends on the molecular weight and grafting density. Langmuir 22:4259–4266. https://doi.org/10.1021/la0531502

    Article  CAS  PubMed  Google Scholar 

  28. Morgese G, Shaghasemi BS, Causin V, Zenobi-Wong M, Ramakrishna SN, Reimhult E, Benetti EM (2017) Next-generation polymer shells for inorganic nanoparticles are highly compact, ultra-dense, and long-lasting cyclic brushes. Angew Chem Int Ed 56:4507–4511. https://doi.org/10.1002/anie.201700196

    Article  CAS  Google Scholar 

  29. Morgese G, Trachsel L, Romio M, Divandari M, Ramakrishna SN, Benetti EM (2016) Topological polymer chemistry enters surface science: linear versus cyclic polymer brushes. Angew Chem Int Ed 55:15583–15588. https://doi.org/10.1002/anie.201607309

    Article  CAS  Google Scholar 

  30. Heskins M, Guillet J (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Pure 2:1441–1455. https://doi.org/10.1080/10601326808051910

    Article  CAS  Google Scholar 

  31. Halperin A, Kröger M, Winnik FM (2015) Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew Chem Int Ed 54:15342–15367. https://doi.org/10.1002/anie.201506663

    Article  CAS  Google Scholar 

  32. Aseyev V, Tenhu H, Winnik FM (2010) Non-ionic thermoresponsive polymers in water. In: Müller A, Borisov O (eds) Self organized nanostructures of amphiphilic block copolymers II. Advances in polymer science, vol 242. Springer, Berlin, Heidelberg, pp 29–89. https://doi.org/10.1007/12_2010_57

    Chapter  Google Scholar 

  33. Nakayama M, Okano T, Winnik F (2010) Poly(N isopropylacrylamide)-based smart surfaces for cell sheet tissue engineering. Material Matters 5:56–58

    CAS  Google Scholar 

  34. Kano K, Yamato M, Okano T (2008) Ectopic transplantation of hepatocyte sheets fabricated with temperature-responsive culture dishes. Hepatol Res 38:1140–1147. https://doi.org/10.1111/j.1872-034X.2008.00371.x

    Article  PubMed  Google Scholar 

  35. Stetsyshyn Y, Zemla J, Zolobko О, Fornal K, Budkowski A, Kostruba A, Donchak V, Harhay K, Awsiuk K, Rysz J, Bernasik A, Voronov S (2012) Temperature and pH dual-responsive coatings of oligoperoxide-graft-poly(N-isopropylacrylamide): wettability, morphology, and protein adsorption. J Colloid Interface Sci 387:95–105. https://doi.org/10.1016/j.jcis.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  36. Annaka M, Yahiro C, Nagase K, Kikuchi A, Okano T (2007) Real-time observation of coil-to-globule transition in thermosensitive poly (N-isopropylacrylamide) brushes by quartz crystal microbalance. Polymer 48:5713–5720. https://doi.org/10.1016/j.polymer.2007.06.067

    Article  CAS  Google Scholar 

  37. Stetsyshyn Y, Fornal K, Raczkowska J, Zemla J, Kostruba A, Ohar H, Ohar M, Donchak V, Harhay K, Awsiuk K, Rysz J, Bernasik A, Budkowski A (2013) Temperature and pH dual-responsive POEGMA-based coatings for protein adsorption. J Colloid Interface Sci 411:247–256. https://doi.org/10.1016/j.jcis.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  38. Ma H, Hyun J, Stiller P, Chilkoti A (2004) Non-fouling oligo (ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv Mater 16:338–341. https://doi.org/10.1002/adma.200305830

    Article  CAS  Google Scholar 

  39. Wischerhoff E, Uhlig K, Lankenau A, Börner HG, Laschewsky A, Duschl C, Lutz JF (2008) Controlled cell adhesion on PEG-based switchable surfaces. Angew Chem Int Ed 47:5666–5668. https://doi.org/10.1002/anie.200801202

    Article  CAS  Google Scholar 

  40. Adamus A, Komasa J, Kadłubowski S, Ulański P, Rosiak JM, Kawecki M, Klama-Baryła A, Dworak A, Trzebicka B, Szweda R (2016) Thermoresponsive poly [tri (ethylene glycol) monoethyl ether methacrylate]-peptide surfaces obtained by radiation grafting-synthesis and characterisation. Colloids Surf B: Biointerfaces 145:185–193. https://doi.org/10.1016/j.colsurfb.2016.04.050

    Article  CAS  PubMed  Google Scholar 

  41. Raczkowska J, Stetsyshyn Y, Awsiuk K, Brzychczy-Włoch M, Gosiewski T, Jany B, Lishchynskyi O, Shymborska Y, Nastyshyn S, Bernasik A, Ohar H, Krok F, Ochońska D, Kostruba A, Budkowski A (2019) “Command” surfaces with thermo-switchable antibacterial activity. Mater Sci Eng C 103:109806. https://doi.org/10.1016/j.msec.2019.109806

    Article  CAS  Google Scholar 

  42. Stetsyshyn Y, Raczkowska J, Budkowski A et al (2015) Synthesis and postpolymerization modification of thermoresponsive coatings based on pentaerythritol monomethacrylate: surface analysis, wettability, and protein adsorption. Langmuir 31:9675–9683. https://doi.org/10.1021/acs.langmuir.5b02285

    Article  CAS  PubMed  Google Scholar 

  43. Raczkowska J, Ohar M, Stetsyshyn Y, Zemła J, Awsiuk K, Rysz J, Fornal K, Bernasik A, Ohar H, Fedorova S, Shtapenko O, Polovkovych S, Novikov V, Budkowski A (2014) Temperature-responsive peptide-mimetic coating based on poly(N-methacryloyl-L-leucine): properties, protein adsorption and cell growth. Colloids Surf B: Biointerfaces 118:270–279. https://doi.org/10.1016/j.colsurfb.2014.03.049

    Article  CAS  PubMed  Google Scholar 

  44. Raczkowska J, Stetsyshyn Y, Awsiuk K, Zemła J, Kostruba A, Harhay K, Marzec M, Bernasik A, Lishchynskyi O, Ohar H, Budkowski A (2016) Temperature-responsive properties of poly (4-vinylpyridine) coatings: influence of temperature on the wettability, morphology, and protein adsorption. RSC Adv 6:87469–87477. https://doi.org/10.1039/C6RA07223B

    Article  CAS  Google Scholar 

  45. Zhanga Z, Zhu X, Xua F, Neoha K, Kanga E (2009) Temperature- and pH-sensitive nylon membranes prepared via consecutive surface-initiated atom transfer radical graft polymerizations. J Membr Sci 342:300–306. https://doi.org/10.1016/j.memsci.2009.07.004

    Article  CAS  Google Scholar 

  46. Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y (1990) Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol Chem Rapid Commun 11:571–576. https://doi.org/10.1002/marc.1990.030111109

    Article  CAS  Google Scholar 

  47. Nagase K, Yamato M, Kanazawa H, Okano T (2018) Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 153:27–48. https://doi.org/10.1016/j.biomaterials.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  48. Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, Okano T (2004) Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77:379–385. https://doi.org/10.1097/01.TP.0000110320.45678.30

    Article  PubMed  Google Scholar 

  49. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y (2004) Corneal reconstruction with tissue engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196

    Article  CAS  Google Scholar 

  50. Kushida A, Yamato M, Isoi Y, Kikuchi A, Okano T (2005) A noninvasive transfer system for polarized renal tubule epithelial cell sheets using temperature-responsive culture dishes. Eur Cell Mater 10:23–30

    Article  CAS  Google Scholar 

  51. Kushida A, Yamato M, Kikuchi A, Okano T (2001) Two-dimensional manipulation of differentiated Madin–Darby canine kidney (MDCK) cell sheets: the noninvasive harvest from temperature-responsive culture dishes and transfer to other surfaces. J Biomed Mater Res 54:37–46. https://doi.org/10.1002/1097-4636(200101)54:1<37::AID-JBM5>3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  52. Yamato M, Utsumi M, Kushida A, Konno C, Kikuchi A, Okano T (2001) Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng 7:473–480. https://doi.org/10.1089/10763270152436517

    Article  CAS  PubMed  Google Scholar 

  53. Akizuki T, Oda S, Komaki M, Tsuchioka H, Kawakatsu N, Kikuchi A, Yamato M, Okano T, Ishikawa I (2005) Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J Periodontal Res 40:245–251. https://doi.org/10.1111/j.1600-0765.2005.00799.x

    Article  PubMed  Google Scholar 

  54. Hasegawa M, Yamato M, Kikuchi A, Okano T, Ishikawa I (2005) Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng 11:469–478. https://doi.org/10.1089/ten.2005.11.469

    Article  CAS  PubMed  Google Scholar 

  55. Ebihara G, Sato M, Yamato M, Mitani G, Kutsuna T, Nagai T, Ito S, Ukai T, Kobayashi M, Kokubo M, Okano T, Mochida J (2012) Cartilage repair in transplanted scaffold-free chondrocyte sheets using a minipig model. Biomaterials 33:3846–3851. https://doi.org/10.1016/j.biomaterials.2012.01.056

    Article  CAS  PubMed  Google Scholar 

  56. Kokubo M, Sato M, Yamato M, Mitani G, Kutsuna T, Ebihara G, Okano T, Mochida J (2016) Characterization of chondrocyte sheets prepared using a co-culture method with temperature-responsive culture inserts. J Tissue Eng Regen Med 10:486–495. https://doi.org/10.1002/term.1764

    Article  CAS  PubMed  Google Scholar 

  57. Yaguchi Y, Murakami D, Yamato M, Hama T, Yamamoto K, Kojima H, Moriyama H, Okano T (2016) Middle ear mucosal regeneration with three-dimensionally tissue-engineered autologous middle ear cell sheets in rabbit model. J Tissue Eng Regen Med 10:E188–E194. https://doi.org/10.1002/term.1790

    Article  CAS  PubMed  Google Scholar 

  58. Shimizu H, Ohashi K, Saito T, Utoh R, Ise K, Yamato M, Okano T, Gotoh M (2013) Topographical arrangement of a- and b-cells within neo-islet tissues engineered by islet cell sheet transplantation in mice. Transplant Proc 45:1881–1884. https://doi.org/10.1016/j.transproceed.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  59. Shimizu H, Ohashi K, Utoh R, Ise K, Gotoh M, Yamato M, Okano T (2009) Bioengineering of a functional sheet of islet cells for the treatment of diabetes mellitus. Biomaterials 30:5943–5949. https://doi.org/10.1016/j.biomaterials.2009.07.042

    Article  CAS  PubMed  Google Scholar 

  60. Ohashi K, Mukobata S, Utoh R, Yamashita S, Masuda T, Sakai H, Okano T (2011) Production of islet cell sheets using cryopreserved islet cells. Transplant Proc 43:3188–3191. https://doi.org/10.1016/j.transproceed.2011.10.027

    Article  CAS  PubMed  Google Scholar 

  61. Ohashi K, Yokoyama T, Yamato M, Kuge H, Kanehiro H, Tsutsumi M, Amanuma T, Iwata H, Yang J, Okano T, Nakajima Y (2007) Engineering functional two and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat Med 13:880–885. https://doi.org/10.1038/nm1576

    Article  CAS  PubMed  Google Scholar 

  62. Matsuzaka N, Nakayama M, Takahashi H, Yamato M, Kikuchi A, Okano T (2013) Terminal-functionality effect of poly(N-isopropylacrylamide) brush surfaces on temperature-controlled cell adhesion/detachment. Biomacromolecules 14:3164–3171. https://doi.org/10.1021/bm400788p

    Article  CAS  PubMed  Google Scholar 

  63. Kim K, Ohashi K, Utoh R, Kano K, Okano T (2012) Preserved liver-specific functions of hepatocytes in 3D co-culture with endothelial cell sheets. Biomaterials 33:1406–1413. https://doi.org/10.1016/j.biomaterials.2011.10.084

    Article  CAS  PubMed  Google Scholar 

  64. Arauchi A, Shimizu T, Yamato M, Obara T, Okano T (2009) Tissue-engineered thyroid cell sheet rescued hypothyroidism in rat models after receiving total thyroidectomy comparing with nontransplantation models. Tissue Eng A 15:3943–3949. https://doi.org/10.1089/ten.tea.2009.0119

    Article  CAS  Google Scholar 

  65. Tang Z, Okano T (2014) Recent development of temperature-responsive surfaces and their application for cell sheet engineering. Regen Biomater 1:91–102. https://doi.org/10.1093/rb/rbu011

    Article  PubMed  PubMed Central  Google Scholar 

  66. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2008) Preparation of thermoresponsive cationic copolymer brush surfaces and application of the surface to separation of biomolecules. Biomacromolecules 9:1340–1347. https://doi.org/10.1021/bm701427m

    Article  CAS  PubMed  Google Scholar 

  67. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2008) Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces. Langmuir 24:511–517. https://doi.org/10.1021/la701839s

    Article  CAS  PubMed  Google Scholar 

  68. Cooperstein MA, Canavan HE (2013) Assesment of cytotoxity of (N-isopropyl acrylamide) and poly(N-isopropyl acrylamide)-coated surfaces. Biointerphases 8:19. https://doi.org/10.1186/1559-4106-8-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Joseph N, Prasad T, Raj V, Anil Kumar PR, Sreenivasan K, Kumary TV (2010) A cytocompatible poly(N-isopropylacrylamide-co-glycidylmethacrylate) coated surface as new substrate for corneal tissue engineering. J Bioact Compat Polym 25:58–74. https://doi.org/10.1177/0883911509353481

    Article  CAS  Google Scholar 

  70. Lutz JF, Akdemir O, Hoth A (2006) Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J Am Chem Soc 128:13046–13047. https://doi.org/10.1021/ja065324n

    Article  CAS  PubMed  Google Scholar 

  71. Takei YG, Aoki T, Sanui K, Ogata N, Sakurai Y, Okano T (1995) Temperature-modulated platelet and lymphocyte interactions with poly(N-isopropylacrylamide)-grafted surfaces. Biomaterials 16:667–673. https://doi.org/10.1016/0142-9612(95)99692-F

    Article  CAS  PubMed  Google Scholar 

  72. LeMieux MC, Peleshanko S, Anderson KD, Tsukruk VV (2007) Adaptive nanomechanical response of stratified polymer brush structures. Langmuir 23:265–273. https://doi.org/10.1021/la061723k

    Article  CAS  PubMed  Google Scholar 

  73. Matsuda T, Ohya S (2005) Photoiniferter-based thermoresponsive graft architecture with albumin covalently fixed at growing graft chain end. Langmuir 21:9660–9665. https://doi.org/10.1021/la050221o

    Article  CAS  PubMed  Google Scholar 

  74. Choi BC, Choi S, Leckband DE (2013) Poly(N-isopropyl acrylamide) brush topography: dependence on grafting conditions and temperature. Langmuir 29:5841–5850. https://doi.org/10.1021/la400066d

    Article  CAS  PubMed  Google Scholar 

  75. Shiddiky MJA, Kithva PH, Kozak D, Trau M (2012) An electrochemical immunosensor to minimize the nonspecific adsorption and to improve sensitivity of protein assays in human serum. Biosens Bioelectron 38:132–137. https://doi.org/10.1016/j.bios.2012.05.014

    Article  CAS  PubMed  Google Scholar 

  76. Cavallaro G, Lazzara G, Lisuzzo L, Milioto S, Parisi F (2018) Selective adsorption of oppositely charged PNIPAAM on halloysite surfaces: a route to thermo-responsive nanocarriers. Nanotechnology 29:325702. https://doi.org/10.1088/1361-6528/aac5c3

    Article  CAS  PubMed  Google Scholar 

  77. Kalay S, Stetsyshyn Y, Lobaz V, Harhay K, Ohar H, Çulha M (2016) Water-dispersed thermo-responsive boron nitride nanotubes: synthesis and properties. Nanotechnology 27:035703. https://doi.org/10.1088/0957-4484/27/3/035703

    Article  CAS  PubMed  Google Scholar 

  78. Lisuzzo L, Cavallaro G, Lazzara G, Milioto S, Parisi F, Stetsyshyn Y (2018) Stability of halloysite, imogolite, and boron nitride nanotubes in solvent media. Appl Sci 8:1068–1077. https://doi.org/10.3390/app8071068

    Article  CAS  Google Scholar 

  79. Durkut S, Elçin YM (2017) Synthesis and characterization of thermosensitive poly(N-vinylcaprolactam)-g-collagen. Artif Cell Nanomed B 45:1665–1674. https://doi.org/10.1080/21691401.2016.1276925

    Article  CAS  Google Scholar 

  80. Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, Okano T (2005) The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials 26:1885–1893. https://doi.org/10.1016/j.biomaterials.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  81. Nagase K, Kumazaki M, Kanazawa H, Kobayashi J, Kikuci A, Akiyama Y, Annaka M, Okano T (2010) Thermoresponsive polymer brush surfaces with hydrophobic groups for all-aqueous chromatography. ACS Appl Mater Interfaces 2:1247–1253. https://doi.org/10.1021/am100122h

    Article  CAS  PubMed  Google Scholar 

  82. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2014) Monolithic silica rods grafted with thermoresponsive anionic polymer brushes for high-speed separation of basic biomolecules and peptides. Biomacromolecules 15:1204–1215. https://doi.org/10.1021/bm401779r

    Article  CAS  PubMed  Google Scholar 

  83. Nagase K, Hatakeyama Y, Shimizu T, Matsuura K, Yamato M, Takeda N, Okano T (2015) Thermoresponsive cationic copolymer brushes for mesenchymal stem cell separation. Biomacromolecules 16:532–540. https://doi.org/10.1021/bm501591s

    Article  CAS  PubMed  Google Scholar 

  84. Sakamoto C, Okada Y, Kanazawa H, Ayano E, Nishimura T, Ando M, Kikuchi A, Okano T (2004) Temperature-and pH responsive aminopropyl-silica ion-exchange columns grafted with copolymers of N-isopropylacrylamide. J Chromatogr A 1030:247–253. https://doi.org/10.1016/j.chroma.2003.09.010

    Article  CAS  PubMed  Google Scholar 

  85. Shi XJ, Chen GJ, Wang YW, Yuan L, Zhang Q, Haddleton DM, Chen H (2013) Control the wettability of poly(N-isopropylacrylamide-co-1-adamantan-1-ylmethyl acrylate) modified surfaces: the more Ada, the bigger impact? Langmuir 29:14188–14195. https://doi.org/10.1021/la4037748

    Article  CAS  PubMed  Google Scholar 

  86. Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2003) Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules 4:344–349. https://doi.org/10.1021/bm025692t

    Article  CAS  PubMed  Google Scholar 

  87. Hatakeyama H, Kikuchi A, Yamato M, Okano T (2006) Bio-functionalized thermoresponsive interfaces facilitating cell adhesion and proliferation. Biomaterials 27:5069–5078. https://doi.org/10.1016/j.biomaterials.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  88. Chen GH, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373:49–52. https://doi.org/10.1038/373049a0

    Article  CAS  PubMed  Google Scholar 

  89. Xia F, Feng L, Wang S, Sun T, Song W, Jiang W, Jiang L (2006) Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Adv Mater 18:432–436. https://doi.org/10.1002/adma.200501772

    Article  CAS  Google Scholar 

  90. Stenzel MH, Zhang L, Huck WTS (2006) Temperature-responsive glycopolymer brushes synthesized via RAFT polymerization using the Z-group approach. Macromol Rapid Commun 27:1121–1126. https://doi.org/10.1002/marc.200600223

    Article  CAS  Google Scholar 

  91. Takahashi H, Nakayama M, Itoga K, Yamato M, Okano T (2011) Micropatterned thermoresponsive polymer brush surfaces for fabricating cell sheets with well-controlled orientational structures. Biomacromolecules 12:1414–1418. https://doi.org/10.1021/bm2000956

    Article  CAS  PubMed  Google Scholar 

  92. Nagase K, Okano T, Kanazawa H (2018) Poly(N-isopropylacrylamide) based thermoresponsive polymer brushes for bioseparation, cellular tissue fabrication, and nano actuators. Nano-Struct Nano-Objects 16:9–23. https://doi.org/10.1016/j.nanoso.2018.03.010

    Article  CAS  Google Scholar 

  93. Kumar S, Dory YL, Lepage M, Zhao Y (2011) Surface-grafted stimuli-responsive block copolymer brushes for the thermo-, photo- and pH-sensitive release of dye molecules. Macromolecules 44:7385–7393. https://doi.org/10.1021/ma2010102

    Article  CAS  Google Scholar 

  94. Politakos N, Yate L, Moya S (2018) Exploring the wetting properties of diblock copolymer brushes with a hydrophobic block of poly(1H,1H,2H,2H-perfluorodecyl acrylate)-(PPFDA) and a thermoresponsive block of poly(N-isopropylacrylamide)-(PNiPAM) synthesized by RAFT polymerization. Nano-Structures&Nano-Objects 16:412–419. https://doi.org/10.1016/j.nanoso.2017.09.006

    Article  CAS  Google Scholar 

  95. Jiang L, Messing ME, Ye L (2017) Temperature and pH dual-responsive Core-brush nanocomposite for enrichment of glycoproteins. ACS Appl Mater Interfaces 9:8985–8995. https://doi.org/10.1021/acsami.6b15326

  96. Nagase K, Kitazawa S, Yamada S, Akimoto AM, Kanazawa H (2020) Mixed polymer brush as a functional ligand of silica beads for temperature-modulated hydrophobic and electrostatic interactions. Anal Chim Acta 1095:1–13. https://doi.org/10.1016/j.aca.2019.10.058

    Article  CAS  PubMed  Google Scholar 

  97. Léonforte F, Müller M (2015) Poly(N-isopropylacrylamide)-based mixed brushes: a computer simulation study. ACS Appl Mater Interfaces 7:12450–12462. https://doi.org/10.1021/am5076309

    Article  CAS  PubMed  Google Scholar 

  98. Frysali MA, Anastasiadis SH (2017) Temperature- and/or pH-responsive surfaces with controllable wettability: from parahydrophobicity to superhydrophilicity. Langmuir 33:9106–9114. https://doi.org/10.1021/acs.langmuir.7b02098

    Article  CAS  PubMed  Google Scholar 

  99. Estillore NC, Advincula RC (2011) Stimuli-responsive binary mixed polymer brushes and free-standing films by LbL-SIP. Langmuir 27:5997–6008. https://doi.org/10.1021/la200089x

    Article  CAS  PubMed  Google Scholar 

  100. Sui X, Zapotoczny S, Benetti EM, Memesa M, Hempeniusa MA, Vancso GJ (2011) Grafting mixed responsive brushes of poly(N-isopropylacrylamide) and poly(methacrylic acid) from gold by selective initiation. Polym Chem 2:879–884. https://doi.org/10.1039/c0py00393j

    Article  CAS  Google Scholar 

  101. Mori T, Maeda M (2004) Temperature-responsive formation of colloidal nanoparticles from poly(N-isopropylacrylamide) grafted with single-stranded DNA. Langmuir 20:313–319. https://doi.org/10.1021/la0356194

    Article  CAS  PubMed  Google Scholar 

  102. Lai JJ, Hoffman JM, Ebara M, Hoffman AS, Estournes C, Wattiaux A, Stayton PS (2007) Dual magnetic−/temperature-responsive nanoparticles for microfluidic separations and assays. Langmuir 23:7385–7391. https://doi.org/10.1021/la062527g

    Article  CAS  PubMed  Google Scholar 

  103. Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T (1997) Thermoresponsive polymer nanoparticles with a core-shell micelle structure as sitespecific drug carriers. J Control Release 48:157–164. https://doi.org/10.1016/S0168-3659(97)00040-0

    Article  CAS  Google Scholar 

  104. Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T (1999) Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J Control Release 62:115–127. https://doi.org/10.1016/S0168-3659(99)00029-2

    Article  CAS  PubMed  Google Scholar 

  105. Kurisawa M, Yokoyama M, Okano T (2000) Gene expression control by temperature with thermo-responsive polymeric gene carriers. J Control Release 69:127–137. https://doi.org/10.1016/S0168-3659(00)00297-2

    Article  CAS  PubMed  Google Scholar 

  106. Takeda N, Nakamura E, Yokoyama M, Okano T (2004) Temperature-responsive polymeric carriers incorporating hydrophobic monomers for effective transfection in small doses. J Control Release 95:343–355. https://doi.org/10.1016/j.jconrel.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  107. Akimoto J, Nakayama M, Okano T (2014) Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors. J Control Release 193:2–8. https://doi.org/10.1016/j.jconrel.2014.06.062

    Article  CAS  PubMed  Google Scholar 

  108. Chilkoti A, Chen G, Stayton PS, Hoffman AS (1994) Site-specific conjugation of a temperature-sensitive polymer to a genetically engineered protein. Bioconjug Chem 5:504–507. https://doi.org/10.1021/bc00030a004

    Article  CAS  PubMed  Google Scholar 

  109. Takei YG, Aoki T, Sanui K, Ogata N, Okano T, Sakurai Y (1993) Temperature-responsive bioconjugates. 1. Synthesis of temperature-responsive oligomers with reactive end groups and their coupling to biomolecules. Bioconjug Chem 4:42–46. https://doi.org/10.1021/bc00019a006

    Article  CAS  PubMed  Google Scholar 

  110. Chen JP, Yang HJ, Huffman AS (1990) Polymer-protein conjugates: I. effect of protein conjugation on the cloud point of poly(N-isopropylacrylamide). Biomaterials 11:625–630. https://doi.org/10.1016/0142-9612(90)90019-M

    Article  CAS  PubMed  Google Scholar 

  111. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2011) Thermally-modulated on/off-adsorption materials for pharmaceutical protein purification. Biomaterials 32:619–627. https://doi.org/10.1016/j.biomaterials.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  112. Bittrich E, Kuntzsch M, Eichhorn KJ, Uhlmann P (2010) Complex pH- and temperature-sensitive swelling behavior of mixed polymer brushes. J Polym Sci B Polym Phys 48:1606–1615. https://doi.org/10.1002/polb.22021

    Article  CAS  Google Scholar 

  113. Rahane SB, Floyd JA, Metters AT, Kilbey SM (2008) Swelling behavior of multiresponsive poly(methacrylic acid)-block--poly(N-isopropylacrylamide) brushes synthesized using surface-initiated photoiniferter-mediated photopolymerization. Adv Funct Mater 18:1232–1240. https://doi.org/10.1002/adfm.200701411

    Article  CAS  Google Scholar 

  114. Lutz JF (2008) Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J Polym Sci A Polym Chem 46:3459–3470. https://doi.org/10.1002/pola.22706

    Article  CAS  Google Scholar 

  115. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360. https://doi.org/10.1038/nrd1088

    Article  CAS  PubMed  Google Scholar 

  116. Badi N, Lutz JF (2009) PEG-based thermogels: applicability in physiological media. J Control Release 140:224–229. https://doi.org/10.1016/j.jconrel.2009.04.012

    Article  CAS  PubMed  Google Scholar 

  117. Hu Z, Cai T, Chi C (2010) Thermoresponsive oligo(ethylene glycol)-methacrylate- based polymers and microgels. Soft Matter 6:2115–2123. https://doi.org/10.1039/B921150K

    Article  CAS  Google Scholar 

  118. Wischerhoff E, Badi N, Laschewsky A, Lutz JF (2011) Smart polymer surfaces: concepts and applications in biosciences. Adv Polym Sci 240:1–33. https://doi.org/10.1007/12_2010_88

    Article  CAS  Google Scholar 

  119. Ishizone T, Seki A, Hagiwara M, Han S, Yokoyama H, Oyane A, Deffieux A, Carlotti S (2008) Anionic polymerizations of oligo(ethylene glycol) alkyl ether methacrylates: effect of side chain length and ω-alkyl group of side chain on cloud point in water. Macromolecules 41:2963–2967. https://doi.org/10.1021/ma702828n

    Article  CAS  Google Scholar 

  120. Jonas AM, Glinel K, Oren R, Nysten B, Huck W (2007) Thermo-responsive polymer brushes with tunable collapse temperatures in the physiological range. Macromolecules 40:4403–4405. https://doi.org/10.1021/ma070897l

    Article  CAS  Google Scholar 

  121. Laloyaux X, Mathy B, Nysten B, Jonas AM (2010) Surface and bulk collapse transitions of thermoresponsive polymer brushes. Langmuir 26:838–847. https://doi.org/10.1021/la902285t

    Article  CAS  PubMed  Google Scholar 

  122. Pop-Georgievski O, Zimmermann R, Kotelnikov I, Proks V, Romeis D, Kučka J, Caspari A, Rypáček F, Werner C (2018) Impact of bioactive peptide motifs on molecular structure, charging and non-fouling properties of poly(ethylene oxide) brushes. Langmuir 34:6010–6020. https://doi.org/10.1021/acs.langmuir.8b00441

    Article  CAS  PubMed  Google Scholar 

  123. Rodriguez-Emmenegger C, Hasan E, Pop-Georgievski O, Houska M, Brynda E, Alles AB (2012) Controlled/living surface-initiated ATRP of antifouling polymer brushes from gold in PBS and blood sera as a model study for polymer modifications in complex biological media. Macromol Biosci 12:525–532. https://doi.org/10.1002/mabi.201100425

    Article  CAS  PubMed  Google Scholar 

  124. Pop-Georgievski O, Rodriguez-Emmenegger C, de los Santos Pereira A, Proks V, Brynda E, Rypáček F (2013) Biomimetic non-fouling surfaces: extending the concepts. J Mater Chem B 1:2859–2867. https://doi.org/10.1039/C3TB20346H

    Article  CAS  PubMed  Google Scholar 

  125. Nomura K, Makino H, Nakaji-Hirabayashi T, Kitano H, Ohno K (2015) Temperature-responsive copolymer brush constructed on a silica microparticle by atom transfer radical polymerization. Colloid Polym Sci 293:851–859. https://doi.org/10.1007/s00396-014-3476-5

    Article  CAS  Google Scholar 

  126. Dworak A, Utrata-Wesolek A, Szweda D (2013) Poly[tri(ethylene glycol) ethyl ether methacrylate]-coated surfaces for controlled fibroblasts culturing. ACS Appl Mater Interfaces 5:2197–2207. https://doi.org/10.1021/am3031882

    Article  CAS  PubMed  Google Scholar 

  127. Jiang S, Müller M, Schönherr H (2019) Toward label-free selective cell separation of different eukaryotic cell lines using thermoresponsive homopolymer layers. ACS Appl Bio Mater 2:2557–2566. https://doi.org/10.1021/acsabm.9b00252

    Article  CAS  Google Scholar 

  128. Laloyaux X, Mathy B, Nysten B, Jonas AM (2010) Bidimensional response maps of adaptive thermo- and pH-responsive polymer brushes. Macromolecules 43:7744–7751. https://doi.org/10.1021/ma1009484

    Article  CAS  Google Scholar 

  129. Medel S, Garcia JM, Garrido L, Quijada-Garrido I, Paris R (2011) Thermo- and pH-responsive gradient and block copolymers based on 2-(2-methoxyethoxy)ethyl methacrylate synthesized via atom transfer radical polymerization and the formation of thermoresponsive surfaces. J Pol Sci A 49:690–700. https://doi.org/10.1002/pola.24480

    Article  CAS  Google Scholar 

  130. Stetsyshyn Y, Raczkowska J, Lishchynskyi et al (2017) Temperature-controlled three-stage switching of wetting, morphology, and protein adsorption. ACS Appl Mater Interfaces 9:12035–12045. https://doi.org/10.1021/acsami.7b00136

    Article  CAS  PubMed  Google Scholar 

  131. Laloyaux X, Fautré E, Blin T, Purohit V, Leprince J, Jouenne T, Jonas AM, Glinel K (2010) Temperature-responsive polymer brushes switching from bactericidal to cell-repellent. Adv Mater 22:5024–5028. https://doi.org/10.1002/adma.201002538

    Article  CAS  PubMed  Google Scholar 

  132. Boyer C, Whittaker MR, Luzon M, Davis TP (2009) Design and synthesis of dual thermoresponsive and antifouling hybrid polymer/gold nanoparticles. Macromolecules 42:6917–6926. https://doi.org/10.1021/ma9013127

    Article  CAS  Google Scholar 

  133. Stetsyshyn Y, Awsiuk K, Kusnezh V, Raczkowska J, Jany BR, Kostruba A, Harhay K, Ohar H, Lishchynskyi O, Shymborska Y, Kryvenchuk Y, Krok F, Budkowski A (2019) Shape-controlled synthesis of silver nanoparticles in temperature-responsive grafted polymer brushes for optical applications. Appl Surf Sci 463:1124–1133. https://doi.org/10.1016/j.apsusc.2018.09.033

    Article  CAS  Google Scholar 

  134. Nastyshyn S, Raczkowska J, Stetsyshyn Y, Orzechowska B, Bernasik A, Shymborska Y, Brzychczy-Włoch M, Gosiewski T, Lishchynskyi O, Ohar H, Ochońska D, Awsiuk K, Budkowski A (2020) Non-cytotoxic, temperature-responsive and antibacterial POEGMA based nanocomposite coatings with silver nanoparticles. RSC Adv 10:10155–10166. https://doi.org/10.1039/C9RA10874B

    Article  CAS  Google Scholar 

  135. Sefcik LS, Kaminski A, Ling K, Laschewsky A, Lutz JF, Wischerhoff E (2013) Effects of PEG-based thermoresponsive polymer brushes on fibroblast spreading and gene expression. Cell Mol Bioeng 6:287–298. https://doi.org/10.1007/s12195-013-0286-7

    Article  CAS  Google Scholar 

  136. Uhlig K, Wischerhoff E, Lutz JF, Laschewsky A, Jaeger MS, Lankenau A, Duschl C (2010) Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy. Soft Matter 6:4262–4267. https://doi.org/10.1039/C0SM00010H

    Article  CAS  Google Scholar 

  137. delas Heras Alarcón C, Farhan T, Osborne VL, Huck WTS, Alexander C (2005) Bioadhesion at micro-patterned stimuli-responsive polymer brushes. J Mater Chem 15:2089–2094. https://doi.org/10.1039/B419142K

    Article  Google Scholar 

  138. Synytska A, Svetushkina E, Puretskiy N, Stoychev G, Berger S, Ionov L, Bellmann C, Eichhorn KJ, Stamm M (2010) Biocompatible polymeric materials with switchable adhesion properties. Soft Matter 6:5907–5914. https://doi.org/10.1039/C0SM00414F

    Article  CAS  Google Scholar 

  139. Tasaki K (1996) Poly(oxyethylene)−water interactions: a molecular dynamics study. J Am Chem Soc 118:8459–8469. https://doi.org/10.1021/ja951005c

    Article  CAS  Google Scholar 

  140. Gao J, Zhai G, Song Y, Jiang B (2008) Multidimensionally stimuli-responsive phase transition of aqueous solutions of poly((N,N-dimethylamino) ethyl methacrylate) and poly(N,N-dimethyl-N-(methacryloyl)ethyl ammonium butane sulfonate). J Appl Polym Sci 107:3548–3556. https://doi.org/10.1002/app.26683

    Article  CAS  Google Scholar 

  141. Yu WH, Kang ET, Neoh KG, Zhu S (2003) Controlled grafting of well-defined polymers on hydrogen-terminated silicon substrates by surface-initiated atom transfer radical polymerization. J Phys Chem B 107:10198–10205. https://doi.org/10.1021/jp034330s

    Article  CAS  Google Scholar 

  142. Xu FJ, Cai QJ, Kang ET, Neoh KG (2005) Surface-initiated atom transfer radical polymerization from halogen-terminated Si(111) (Si−X, X = Cl, Br) surfaces for the preparation of well-defined polymer−Si hybrids. Langmuir 21:3221–3225. https://doi.org/10.1021/la0473714

    Article  CAS  PubMed  Google Scholar 

  143. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882. https://doi.org/10.1021/bm034352k

    Article  CAS  PubMed  Google Scholar 

  144. Chen X, Randall DP, Perruchot C, Watts JF, Patten TE, WerneT ASP (2003) Synthesis and aqueous solution properties of polyelectrolyte-grafted silica particles prepared by surface-initiated atom transfer radical polymerization. J Colloid Interface Sci 257:56–64. https://doi.org/10.1016/S0021-9797(02)00014-0

    Article  CAS  PubMed  Google Scholar 

  145. Liu T, Jia S, Kowalewski T, Matyjaszewski K, Casado-Portilla R, Belmont J (2006) Water-dispersible carbon black nanocomposites prepared by surface-initiated atom transfer radical polymerization in Protic media. Macromolecules 39:548–556. https://doi.org/10.1021/ma051659y

    Article  CAS  Google Scholar 

  146. Zheng G, Stöver HDH (2003) Grafting of poly(ε-caprolactone) and poly(ε-caprolactone-block-(dimethylamino)ethyl methacrylate) from polymer microspheres by ring-opening polymerization and ATRP. Macromolecules 36:7439–7445. https://doi.org/10.1021/ma0212902

    Article  CAS  Google Scholar 

  147. Cheng Z, Zhu X, Shi ZL, Neoh KG, Kang ET (2005) Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization. Ind Eng Chem Res 44:7098–7104. https://doi.org/10.1021/ie050225o

    Article  CAS  Google Scholar 

  148. Dong Z, Wei H, Mao J, Wang D, Yang M, Bo S, Ji X (2012) Synthesis and responsive behavior of poly(N,N-dimethylaminoethyl methacrylate) brushes grafted on silica nanoparticles and their quaternized derivatives. Polymer 53:2074–2084. https://doi.org/10.1016/j.polymer.2012.03.011

    Article  CAS  Google Scholar 

  149. Wang Y, Kozlovskaya V, Arcibal IG, Cropek DM, Kharlampieva E (2013) Highly swellable ultrathin poly(4-vinylpyridine) multilayer hydrogels with pH-triggered surface wettability. Soft Matter 9:9420–9429. https://doi.org/10.1039/C3SM51496J

    Article  CAS  Google Scholar 

  150. Sidorenko A, Minko S, Schenk-Meuser K, Duschner H, Stamm M (1999) Switching of polymer brushes. Langmuir 15:8349–8355. https://doi.org/10.1021/la990869z

    Article  CAS  Google Scholar 

  151. Changez M, Koh HD, Kang NG, Kim JG, Kim YJ, Samal S, Lee JS (2012) Molecular level ordering in poly(2-vinylpyridine). Adv Mater 24:3253–3257. https://doi.org/10.1002/adma.201201342

    Article  CAS  PubMed  Google Scholar 

  152. Mori H, Iwaya H, Endo T (2007) Controlled synthesis of thermoresponsive polymer via RAFT polymerization of an acrylamide containing l-proline moiety. React Funct Polym 67:916–927. https://doi.org/10.1016/j.reactfunctpolym.2007.05.016

    Article  CAS  Google Scholar 

  153. Mori H, Iwaya H, Endo T (2007) Structures and chiroptical properties of thermoresponsive block copolymers containing L-proline moieties. Macromol Chem Phys 208:1908–1918. https://doi.org/10.1002/macp.200700178

    Article  CAS  Google Scholar 

  154. Mori H, Kato I, Matsuyama M, Endo T (2008) RAFT polymerization of acrylamides containing proline and hydroxyproline moiety: controlled synthesis of water-soluble and thermoresponsive polymers. Macromolecules 41:5604–5615. https://doi.org/10.1021/ma800181h

    Article  CAS  Google Scholar 

  155. Mori H, Kato I, Endo T (2009) Dual-stimuli-responsive block copolymers derived from proline derivatives. Macromolecules 42:4985–4992. https://doi.org/10.1021/ma900706s

    Article  CAS  Google Scholar 

  156. Mori H, Iwaya H, Nagai A, Endo T (2005) Controlled synthesis of thermoresponsive polymers derived from l-proline via RAFT polymerization. Chem Commun 38:4872–4874. https://doi.org/10.1039/B509212D

    Article  Google Scholar 

  157. Liu Z, Hu J, Sun J, He G, Li Y, Zhang G (2010) Preparation of thermoresponsive polymers bearing amino acid diamide derivatives via RAFT polymerization. J Polym Sci A Polym Chem 48:3573–3586. https://doi.org/10.1002/pola.24137

    Article  CAS  Google Scholar 

  158. Haynie DT, Zhang L, Rudra JS, Zhao WH, Zhong Y, Palath N (2005) Polypeptide multilayer films. Biomacromolecules 6:2895–2913. https://doi.org/10.1021/bm050525p

    Article  CAS  PubMed  Google Scholar 

  159. Tan YN, Lee JY, Wang DIC (2009) Morphosynthesis of gold nanoplates in polypeptide multilayer films. J Phys Chem C 113:10887–10895. https://doi.org/10.1021/jp9014367

    Article  CAS  Google Scholar 

  160. Sohn D, Kitaev V, Kumacheva E (1999) Self-assembly of substituted polyglutamates on solid substrates: the side-chain effect. Langmuir 15:1698–1702. https://doi.org/10.1021/la980885g

    Article  CAS  Google Scholar 

  161. Atmaja B, Cha JN, Marshall A, Frank CW (2009) Supramolecular assembly of block copolypeptides with semiconductor nanocrystals. Langmuir 25:707–715. https://doi.org/10.1021/la801848d

    Article  CAS  PubMed  Google Scholar 

  162. Jaworek T, Neher D, Wegner G, Wieringa RH, Schouten A (1998) Electromechanical properties of an ultrathin layer of directionally aligned helical polypeptides. Science 279:57–60. https://doi.org/10.1126/science.279.5347.57

    Article  CAS  PubMed  Google Scholar 

  163. Crouzier T, Picart C (2009) Ion pairing and hydration in polyelectrolyte multilayer films containing polysaccharides. Biomacromolecules 10:433–442. https://doi.org/10.1021/bm8012378

    Article  CAS  PubMed  Google Scholar 

  164. Ito Y, Ochiai Y, Park YS, Imanishi Y (1997) pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane. J Am Chem Soc 119:1619–1623. https://doi.org/10.1021/ja963418z

    Article  CAS  Google Scholar 

  165. Wang Y, Chang Y (2003) Synthesis and conformational transition of surface-tethered polypeptide: poly (L-lysine). Macromolecules 36:6511–6518. https://doi.org/10.1021/ma034093r

    Article  CAS  Google Scholar 

  166. Ito Y, Park YS, Imanishi Y (2000) Nanometer-sized channel gating by a self-assembled polypeptide brush. Langmuir 16:5376–5381. https://doi.org/10.1021/la991102+

    Article  CAS  Google Scholar 

  167. Zimmermann R, Kratzmuller T, Erickson D, Li D, Braun HG, Werner C (2004) Ionic strength-dependent pK shift in the helix−coil transition of grafted poly(l-glutamic acid) layers analyzed by electrokinetic and ellipsometric measurements. Langmuir 20:2369–2374. https://doi.org/10.1021/la035945j

    Article  CAS  PubMed  Google Scholar 

  168. Wang YL, Chang YC (2003) Preparation of unidirectional end-grafted α-helical polypeptides by solvent quenching. J Am Chem Soc 125:6376–6377. https://doi.org/10.1021/ja034428k

    Article  CAS  PubMed  Google Scholar 

  169. Yang CT, Wang Y, Chang YC (2010) Effect of solvents and temperature on the conformation of poly(β-benzyl-L-aspartate) brushes. Biomacromolecules 11:1308–1313. https://doi.org/10.1021/bm1000907

    Article  CAS  PubMed  Google Scholar 

  170. Shen Y, Desseaux S, Aden B, Lokitz BS, Kilbey SM, Li Z, Klok HA (2015) Shape-persistent, thermoresponsive polypeptide brushes prepared by vapor deposition surface-initiated ring-opening polymerization of α-amino acid N-carboxyanhydrides. Macromolecules 48:2399–2406. https://doi.org/10.1021/acs.macromol.5b00017

    Article  CAS  Google Scholar 

  171. Vo CD, Rosselgong J, Armes SP, Tirelli N (2010) Stimulus-responsive polymers based on 2-hydroxypropyl acrylate prepared by RAFT polymerization. J Polym Sci A Polym Chem 48:2032–2043. https://doi.org/10.1002/pola.23973

    Article  CAS  Google Scholar 

Download references

Funding

The research was carried out with equipment purchased with financial support from the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (contract no. POIG.02.01.00-12-023/08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yurij Stetsyshyn or Joanna Raczkowska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stetsyshyn, Y., Raczkowska, J., Harhay, K. et al. Temperature-responsive and multi-responsive grafted polymer brushes with transitions based on critical solution temperature: synthesis, properties, and applications. Colloid Polym Sci 299, 363–383 (2021). https://doi.org/10.1007/s00396-020-04750-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04750-0

Keywords

Navigation