Skip to main content
Log in

Synthesis of nonlinear polymer brushes on magnetic nanoparticles as an affinity adsorbent for His-tagged xylanase purification

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this article, the magnetic nanospheres bonded to a polymer chelator have synthesized through a new strategy consisted of four parts: (1) synthesis and surface modification of nanoparticles with vinyl groups; (2) grafting of a water-soluble polymer having hydroxyl groups, by polymerization of the resulting monomer from the reaction of glycidyl methacrylate (GMA) and diethanolamine (DEA) on the surface of nanomagnetic particles; (3) by cerium(IV), conversion of hydroxyl groups of the synthesized polymer on the nanoparticles to radicals for subsequent grafting of the resulting monomer from reaction of GMA and iminodiacetic acid (IDA); and (4) in an ion-exchange process, nickel ions along the last synthesized polymer were immobilized. The prepared nanospheres were successfully used directly for purification of His-tagged xylanase from cell lysates. The separated proteins were subjected to enzyme assays and are observed well in the enzymatic activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Renuse S, Madugundu AK, Kumar P, Nair BG, Gowda H, Prasad TS, Pandey A (2014) Proteomic analysis and genome annotation of Pichia pastoris, a recombinant protein expression host. Proteomics 14:2769–2779

    CAS  PubMed  Google Scholar 

  2. Pal M, Khanal M, Marko R, Thirumalairajan S, Bearne SL (2016) Rational design and synthesis of substrate-product analogue inhibitors of alpha-methylacyl-coenzyme A racemase from Mycobacterium tuberculosis. Chem Commun 52:2740–2743

    CAS  Google Scholar 

  3. Zhu X, Yang H, Guo Z, Yu W, Carney PJ, Li Y, Chen LM, Paulson JC, Donis RO, Tong S, Stevens J, Wilson IA (2012) Crystal structures of two subtype N10 neuraminidase-like proteins from bat influenza A viruses reveal a diverged putative active site. PNAS 109:18903–18908

    CAS  PubMed  Google Scholar 

  4. Gaberc-Porekar V, Menart V (2005) Potential for using histidine tags in purification of proteins at large scale. Chem Eng Technol 28:1306–1314

    CAS  Google Scholar 

  5. Lata S, Reichel A, Brock R, Tampe R, Piehler J (2005) High-affinity adaptors for switchable recognition of histidine-tagged proteins. J Am Chem Soc 127:10205–10215

    CAS  PubMed  Google Scholar 

  6. Xu CJ, Xu KM, Gu HW, Zhong XF, Guo ZH, Zheng RK, Zhang XX, Xu B (2004) Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc 126:3392–3393

    CAS  PubMed  Google Scholar 

  7. Benelmekki M, Xuriguera E, Caparros C, Rodriguez-Carmona E, Mendoza R, Corchero JL, Lanceros-Mendez S, Martinez LM (2012) Design and characterization of Ni2+and Co2+ decorated porous magnetic silica spheres synthesized by hydrothermal-assisted modified-Stober method for His-tagged proteins separation. J Colloid Interface Sci 365:156–162

    CAS  PubMed  Google Scholar 

  8. Kim J, Piao Y, Lee N, Park YI, Lee IH, Lee JH, Paik SR, Hyeon T (2010) Magnetic nanocomposite spheres decorated with NiO nanoparticles for a magnetically recyclable protein separation system. Adv Mater 22:57–60

    CAS  PubMed  Google Scholar 

  9. Wang W, Wang DIC, Li Z (2011) Facile fabrication of recyclable and active nanobiocatalyst: purification and immobilization of enzyme in one pot with Ni-NTA functionalized magnetic nanoparticle. Chem Commun 47:8115–8117

    CAS  Google Scholar 

  10. Shukoor MI, Natalio F, Therese HA, Tahir MN, Ksenofontov V, Panthofer M, Eberhardt M, Theato P, Schroder HC, Müller WEG, Tremel W (2008) Fabrication of a silica coating on magnetic γ-Fe2O3 nanoparticles by an immobilized enzyme. Chem Mater 20:3567–3573

    CAS  Google Scholar 

  11. Shao MF, Ning FY, Zhao JW, Wei M, Evans DG, Duan X (2012) Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J Am Chem Soc 134:1071–1077

    CAS  PubMed  Google Scholar 

  12. Li YC, Lin YS, Tsai PJ, Chen CT, Chen WY, Chen YC (2007) Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal Chem 79:7519–7525

    CAS  PubMed  Google Scholar 

  13. Liu Z, Li M, Yang XJ, Yin ML, Ren JS, Qu XG (2011) The use of multifunctional magnetic mesoporous core/shell hetero nanostructures in a biomolecule separation system. Biomaterials 32:4683–4690

    CAS  PubMed  Google Scholar 

  14. Fang WJ, Chen XL, Zheng NF (2010) Superparamagnetic core/shell polymer particles for efficient purification of His-tagged proteins. J Mater Chem 20:8624–8630

    CAS  Google Scholar 

  15. Xu F, Geiger JH, Baker GL, Bruening ML (2011) Polymer brush-modified magnetic nanoparticles for His-tagged protein purification. Langmuir 27:3106–3112

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dyal A, Loos K, Noto M, Chang S, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA (2003) Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685

    CAS  PubMed  Google Scholar 

  17. Ma WF, Zhang Y, Li LL, You LJ, Zhang P, Zhang YT, Li JM, Yu M, Guo J, Lu HJ, Wang CC (2012) Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phospho peptides. ACS Nano 6:3179–3188

    CAS  PubMed  Google Scholar 

  18. Luo B, Xu S, Luo A, Wang WR, Wang SL, Guo J, Lin Y, Zhao DY, Wang CC (2011) Mesoporous biocompatible and acid-degradable magnetic colloidal nano crystal clusters with sustainable stability and high hydrophobic drug loading capacity. ACS Nano 5:1428–1435

    CAS  PubMed  Google Scholar 

  19. Cho HS, Dong ZY, Pauletti GM, Zhang JM, Xu H, Gu HC, Wang LM, Ewing RC, Huth C, Wang F, Shi DL (2010) Fluorescent, super paramagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nano carrier system for cancer diagnosis and treatment. ACS Nano 4:5398–5404

    CAS  PubMed  Google Scholar 

  20. Li D, Tang J, Wei C, Guo J, Wang SL, Chaudhary D, Wang CC (2012) Doxorubicin-conjugated mesoporous magnetic colloidal nano crystal clusters stabilized by polysaccharide as a smart anticancer drug vehicle. Small 8:2690–2697

    CAS  PubMed  Google Scholar 

  21. Rembsum A, Dreyer W (1980) Immunomicrospheres: reagents for cell labeling and separation. Science 208:364–368

    Google Scholar 

  22. Wang D, He J, Rosenzweig N, Rosenzweig Z (2004) Rational growth of branched and hyperbranched nanowire structures. Nano Lett 4:409–413

    CAS  Google Scholar 

  23. Yang J, Lee CH, Park J, Seo S, Lim EK, Song YJ, Suh JS, Yoon HG, Huh YM, Haam S (2010) Uniform magnetic core/shell microspheres functionalized with Ni2+–iminodiacetic acid for one step purification and immobilization of His-tagged enzymes. J Mater Chem 20:8624–8630

    Google Scholar 

  24. Kim J, Piao Y, Hyeon T (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38:372–390

    CAS  PubMed  Google Scholar 

  25. Shi DL, Bedford NM, Cho HS (2011) Engineered multifunctional nano carriers for cancer diagnosis and therapeutics. Small 7:2549–2567

    CAS  PubMed  Google Scholar 

  26. Zhang L, Chen L, Wan QH (2008) Preparation of uniform magnetic microspheres through hydrothermal reduction of iron hydroxide nanoparticles embedded in a polymeric matrix. Chem Mater 20:3345–3353

    CAS  Google Scholar 

  27. Di Corato R, Piacenza P, Musaro M, Buonsanti R, Cozzoli PD, Zambianchi M, Barbarella G, Cingolani R, Manna L, Pellegrino T (2009) Magnetic fluorescent colloidal nanobeads: preparation and exploitation in cell separation experiments. Macromol Biosci 9:952–958

    PubMed  Google Scholar 

  28. Felinto MCFC, Parra DF, Lugao AB, Batista MP, Higa OZ, Yamaura M, Camilo RL, Ribela MTCP, Sampaio LC (2005) Magnetic polymeric microspheres for protein adsorption. Nucl Instrum Methods Phys Res Sect B 236:495–500

    CAS  Google Scholar 

  29. Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127:4990–4991

    CAS  PubMed  Google Scholar 

  30. Gao R, Kong XX, Wang X, He XW, Chen LX, Zhang YK (2011) Preparation and characterization of uniformly sized molecularly imprinted polymers functionalized with core–shell magnetic nanoparticles for the recognition and enrichment of protein. J Mater Chem 21:17863–17871

    CAS  Google Scholar 

  31. Lyon JL, Fleming DA, Stone B, Schiffer P, Williams ME (2004) Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4:719–723

    CAS  Google Scholar 

  32. Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, Yang I, Kim JS, Kim SK, Cho MH, Hyeon T (2006) Designed fabrication of multifunctional magnetic gold nano shells and their application to magnetic resonance imaging and photo thermal therapy. Angew Chem Int Ed 45:7754–7758

    CAS  Google Scholar 

  33. Xu ZC, Hou YL, Sun SH (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699

    CAS  PubMed  Google Scholar 

  34. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    CAS  PubMed  Google Scholar 

  35. Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36:168–189

    CAS  Google Scholar 

  36. Lin ZA, Zheng JN, Lin F, Zhang L, Cai ZW, Chen GN (2011) Synthesis of magnetic nanoparticles with immobilized amino phenyl boronic acid for selective capture of glycoproteins. J Mater Chem 21:518–524

    CAS  Google Scholar 

  37. Zhang M, Zhang XH, He XW, Chen LX, Zhang YKA (2012) Self-Assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale 4:3141–3147

    CAS  PubMed  Google Scholar 

  38. Lin ZA, Xia ZW, Zheng JN, Zheng D, Zhang L, Yang HH, Chen GN (2012) Synthesis of uniformly sized molecularly imprinted polymer-coated silica nanoparticles for selective recognition and enrichment of lysozyme. J Mater Chem 22:17914–17922

    CAS  Google Scholar 

  39. Lin ZA, Zheng JN, Xia ZW, Yang HH, Zhang L, Chen GN (2012) One-pot synthesis of phenylboronic acid-functionalized core-shell magnetic nanoparticles for selective enrichment of glycoproteins. RSC Adv 2:5062–5065

    CAS  Google Scholar 

  40. Muller WJ (1990) New ion exchangers for the chromatography of biopolymers. Chromatogr 510:133–140

    Google Scholar 

  41. Massart T (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn MAG 17:1247

    Google Scholar 

  42. Chen CY, Chen CYJ (2002) Stability constants of polymer-bound iminodiacetate-type chelating agents with some transition-metal ions. J Appl Polym Sci 86:1986–1994

    CAS  Google Scholar 

  43. Rahimian Gavaseraei H, Hasanzadeh R, Afsharnezhad M, Foroutan Kalurazi A, Shahangian SH, Aghamaali MR, Aminzadeh S (2020) A novel cellulase-free xylanase B from the thermophilic bacterium Chonella sp.A01; cloning, purification and biochemical characterization. [Submitted]

  44. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    CAS  Google Scholar 

  45. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  Google Scholar 

  46. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  47. Ma ZY, Guan YP, Liu XQ, Liu HZ (2005) Synthesis of magnetic chelator for high-capacity immobilized metal affinity adsorption of protein by cerium initiated graft polymerization. Langmuir 21:6987–6994

    CAS  PubMed  Google Scholar 

  48. Philips AP, Van Brugen MPB, Pathmamanoharan C (1994) Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core. Langmuir 10:92–99

    Google Scholar 

  49. Deng Y, Wang C, Hu J, Yang W, Fu S (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf 262:87–93

    CAS  Google Scholar 

  50. Lu Y, Yin Y, Mayers BT, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett 2:183–186

    CAS  Google Scholar 

  51. Sachnin A, Kulkarni P, Sawadh S, Prakash K (2014) Synthesis and characterization of superparamagnetic Fe3O4@SiO2 nanoparticles. J Korean Chem Soc 58:100–104

    Google Scholar 

  52. Zou X, Li K, Zhao Y, Zhang Y, Li B, Song C (2013) Ferroferric oxide/L-cysteine magnetic nanospheres for capturing histidine-tagged proteins. J Mater Chem B 1:5108–5113

    CAS  PubMed  Google Scholar 

  53. Zhang Y, Yang Y, Ma W, Guo J, Lin Y, Wang C (2013) Uniform magnetic core/shell microspheres functionalized with Ni2 + –iminodiacetic acid for one step purification and immobilization of His-tagged enzymes. ACS Appl Mater Interfaces 5:2626–2633

    CAS  PubMed  Google Scholar 

  54. Fenga G, Hu D, Yang L, Cui Y, Cui X, Li H (2010) Immobilized-metal affinity chromatography adsorbent with paramagnetism and its application in purification of histidine-tagged proteins. Sep Purif Technol 74:253–260

    Google Scholar 

  55. Zhang L, Zhu X, Jiao D, Sun Y, Sun H (2013) Efficient purification of His-tagged protein by superparamagnetic Fe3O4/Au–ANTA–Co2+ nanoparticles. Mater Sci Eng C 33:1989–1992

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the support of the Chemistry Department of the Islamic Azad University of Central Tehran Branch and the Iranian Polymer and Petrochemical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habibollah Baharvand.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirzadi, Z., Baharvand, H., Nezhati, M.N. et al. Synthesis of nonlinear polymer brushes on magnetic nanoparticles as an affinity adsorbent for His-tagged xylanase purification. Colloid Polym Sci 298, 1597–1607 (2020). https://doi.org/10.1007/s00396-020-04749-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04749-7

Keywords

Navigation