Silverstein MS (2020) The chemistry of porous polymers: the holey grail. Isr J Chem 60:1–12. https://doi.org/10.1002/ijch.202000003
CAS
Article
Google Scholar
Zhang T, Sanguramath RA, Israel S, Silverstein MS (2019) Emulsion templating: porous polymers and beyond. Macromolecules 52:5445–5479. https://doi.org/10.1021/acs.macromol.8b02576
CAS
Article
Google Scholar
Zhang T, Zhao Y, Silverstein MS (2020) Cellulose-based, highly porous polyurethanes templated within non-aqueous high internal phase emulsions. Cellulose 27:4007–4018. https://doi.org/10.1007/s10570-020-03059-z
David D, Silverstein MS (2009) Porous polyurethanes synthesized within high internal phase emulsions. J Polym Sci A Polym Chem 47:5806–5814. https://doi.org/10.1002/pola.23624
CAS
Article
Google Scholar
Naranda J, Sušec M, Maver U, Gradišnik L, Gorenjak M, Vukasović A, Ivković A, Rupnik MS, Vogrin M, Krajnc P (2016) Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration. Sci Rep 6:28695. https://doi.org/10.1038/srep28695
CAS
Article
PubMed
PubMed Central
Google Scholar
Gurevitch I, Silverstein MS (2011) Nanoparticle-based and organic-phase-based AGET ATRP polyHIPE synthesis within Pickering HIPEs and surfactant-stabilized HIPEs. Macromolecules 44:3398–3409. https://doi.org/10.1021/ma200362u
CAS
Article
Google Scholar
Khodabandeh A, Dario Arrua R, Desire CT, Rodemann T, Bon SAF, Thickett SC, Hilder EF (2016) Preparation of inverse polymerized high internal phase emulsions using an amphiphilic macro-RAFT agent as sole stabilizer. Polym Chem 7:1803–1812. https://doi.org/10.1039/C5PY02012C
CAS
Article
Google Scholar
Mert EH, Slugovc C, Krajnc P (2015) Tailoring the mechanical and thermal properties of dicyclopentadiene polyHIPEs with the use of a comonomer. eXPRESS Polym Lett 9:344–353. https://doi.org/10.3144/expresspolymlett.2015.32
CAS
Article
Google Scholar
Yüce E, Mert EH, Krajnc P, Parın FN, San N, Kaya D, Yıldırım H (2017) Photocatalytic activity of titania/polydicyclopentadiene polyHIPE composites. Macromol Mater Eng 302:1700091. https://doi.org/10.1002/mame.201700091
CAS
Article
Google Scholar
Pulko I, Krajnc P (2017) Porous polymer monoliths by emulsion templating. Encyclopedia of Polymer Science and Technology, Wiley. https://doi.org/10.1002/0471440264.pst653
Barby D, Haq Z (1982) Low density porous cross-linked polymeric materials and their preparation. Eur Patent 0060138
Cameron NR (2005) High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 46:1439–1449. https://doi.org/10.1016/j.polymer.2004.11.097
CAS
Article
Google Scholar
Mert HH, Mert MS, Mert EH (2019) A statistical approach for tailoring the morphological and mechanical properties of polystyrene polyHIPEs: looking through experimental design. Mater Res Express 6:1153006. https://doi.org/10.1088/2053-1591/ab437f
CAS
Article
Google Scholar
Yüce E, Parın FN, Krajnc P, Mert HH, Mert EH (2018) Influence of titania on the morphological and mechanical properties of 1,3-butanediol dimethacrylate based polyHIPE composites. React Func Polym 130:8–15. https://doi.org/10.1016/j.reactfunctpolym.2018.05.009
CAS
Article
Google Scholar
Paljevac M, Kotek J, Jeřabek K, Krajnc P (2018) Influence of topology of highly porous methacrylate polymers on their mechanical properties. Macromol Mater Eng 303:1700337. https://doi.org/10.1002/mame.201700337
Menner A, Salgueiro M, Shaffer MSP, Bismarck A (2008) Nanocomposite foams obtained by polymerization of high internal phase emulsions. J Polym Sci Part A Polym Chem 46:5708–5714. https://doi.org/10.1002/pola.22878
CAS
Article
Google Scholar
Yüce E, Krajnc P, Mert HH, Mert EH (2019) Influence of nanoparticles and antioxidants on mechanical properties of titania/polydicyclopentadiene polyHIPEs: a statistical approach. J Appl Polym Sci 136:46913. https://doi.org/10.1002/app.46913
CAS
Article
Google Scholar
Berber E, Çira F, Mert EH (2016) Preparation of porous polyester composites via emulsion templating: investigation of the morphological, mechanical, and thermal properties. Polym Compos 37:1531–1538. https://doi.org/10.1002/pc.23323
CAS
Article
Google Scholar
Wu R, Menner A, Bismarck A (2010) Tough interconnected polymerized medium and high internal phase emulsions reinforced by silica particles. J Polym Sci Part A Polym Chem 48:1979–1989. https://doi.org/10.1002/pola.23965
CAS
Article
Google Scholar
Çira F, Mert EH (2015) PolyHIPE/Pullulan composites derived from glycidyl methacrylate and 1,3-butanediol dimethacrylate-based high internal phase emulsions. Polym Eng Sci 55:2636–2642. https://doi.org/10.1002/pen.24156
CAS
Article
Google Scholar
Huš S, Kolar M, Krajnc P (2015) Tailoring morphological features of cross-linked emulsion-templated poly(glycidyl methacrylate). Des Monomers Polym 18:698–703. https://doi.org/10.1080/15685551.2015.1070503
CAS
Article
Google Scholar
Huš S, Krajnc P (2015) PolyHIPEs from methyl methacrylate: hierarchically structured microcellular polymers with exceptional mechanical properties. Polymer 55:4420–4424. https://doi.org/10.1016/j.polymer.2014.07.007
CAS
Article
Google Scholar
Kovačič S, Matsko NB, Ferk G, Slugovc C (2013) Macroporous poly(dicyclopentadiene) γFe2O3/Fe3O4 nanocomposite foams by high internal phase emulsion templating. J Mater Chem A 1:7971–7978. https://doi.org/10.1039/C3TA11402C
Article
Google Scholar
Vakalopoulou E, Slugovc C (2019) The effects of enhancing the crosslinking degree in high internal phase emulsion templated poly(dicyclopentadiene) cured by ring-opening metathesis polymerization by a crosslinking comonomer. Macromol Chem Phys 220:1900423. https://doi.org/10.1002/macp.201900423
CAS
Article
Google Scholar
Bauer N, Brunke J, Kali G (2017) Controlled radical polymerization of myrcene in bulk: mapping the effect of conditions on the system. ACS Sustain Chem Eng 5:10084–10092. https://doi.org/10.1021/acssuschemeng.7b02091
CAS
Article
Google Scholar
Behr A, Johnen L (2009) Myrcene as a natural base chemical in sustainable chemistry: a critical review. Chem Sus Chem 2:1072–1095. https://doi.org/10.1002/cssc.200900186
CAS
Article
Google Scholar
Métafiot A, Kanawati Y, Gérard JF, Defoort B, Marić M (2017) Synthesis of β-myrcene-based polymers and styrene block and statistical copolymers by SG1 nitroxide-mediated controlled radical polymerization. Macromolecules 50:3101–3120. https://doi.org/10.1021/acs.macromol.6b02675
CAS
Article
Google Scholar
Yang X, Li S, Xia J, Song J, Huang K, Li M (2015) Renewable myrcene-based-UV-curable monomer and its copolymers with acrylated epoxidized soybean oil: design, preparation, and characterization. Bioresources 10:2130–2142. https://doi.org/10.15376/biores.10.2.2130-2142
Article
Google Scholar
Johanson AJ, Mckennon FL, Goldblatt LA (1948) Emulsion polymerization of myrcene. Ind Eng Chem 40:500–502. https://doi.org/10.1021/ie50459a033
CAS
Article
Google Scholar
Loughmari S, Hafid A, Bouazza A, El Bouadili A, Zinck P, Visseaux M (2012) Highly stereoselective coordination polymerization of β-myrcene from a lanthanide-based catalyst: access to bio-sourced elastomers. J Polym Sci Part A Polym Chem 50:2898–2905. https://doi.org/10.1002/pola.26069
CAS
Article
Google Scholar
Metafiot A, Gérard JF, Defoort B, Marić M (2018) Synthesis of β-myrcene/glycidyl methacrylate statistical and amphiphilic diblock copolymers by SG1 nitroxide-mediated controlled radical polymerization. J Polym Sci Part A Polym Chem 56:860–878. https://doi.org/10.1002/pola.28963
CAS
Article
Google Scholar
Hilschmann J, Kali G (2015) Bio-based polymyrcene with highly ordered structure via solvent free controlled radical polymerization. Eur Polym J 73:363–373. https://doi.org/10.1016/j.eurpolymj.2015.10.021
CAS
Article
Google Scholar
Cawse JL, Stanford JL, Still RH (1986) Polymers from renewable sources. III. Hydroxy-terminated myrcene polymers. J Appl Polym Sci 31:1963–1975. https://doi.org/10.1002/app.1986.070310702
CAS
Article
Google Scholar
Cawse JL, Stanford JL, Still RH (1986) Polymers from renewable sources. IV. Polyurethane elastomers based on myrcene polyols. J Appl Polym Sci 31:1549–1565. https://doi.org/10.1002/app.1986.070310602
CAS
Article
Google Scholar
Cawse JL, Stanford JL, Still RH (1987) Polymers from renewable sources: 5. Myrcene-based polyols as rubber-toughening agents in glassy polyurethanes. Polymer 28:368–374. https://doi.org/10.1016/0032-3861(87)90187-X
CAS
Article
Google Scholar
Still RH, Cawse JL, Stanford J (1984) Functionally Terminated Polymers from Terpene Monomers and Their Applications. US Patent 4564718
Barbetta A, Cameron NR (2004) Morphology and surface area of emulsion-derived (polyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: span 80 as surfactant. Macromolecules 37:3188–3201. https://doi.org/10.1021/ma0359436
CAS
Article
Google Scholar
Trumbo DL (1993) Free radical copolymerization behavior of myrcene I. copolymers with styrene, methyl methecrylate or p-fluorostyrene. Polym Bull 31:629–636. https://doi.org/10.1007/BF00300120
Matic A, Schlaad H (2018) Thiol-ene photofunctionalization of 1,4-polymyrcene. Polym Int 67:500–505. https://doi.org/10.1002/pi.5534
CAS
Article
Google Scholar
Krajnc P, Lebera N, Štefanec D, Kontrec S, Podgornik A (2005) Preparation and characterisation of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media. J Chrom A 1065:69–73. https://doi.org/10.1016/j.chroma.2004.10.051
CAS
Article
Google Scholar
Barbetta A, Dentini M, Leandri L, Ferraris G, Coletta A, Bernabei M (2009) Synthesis and characterization of porous glycidyl methacrylate–divinylbenzene monoliths using the high internal phase emulsion approach. React Funct Polym 69:724–736. https://doi.org/10.1016/j.reactfunctpolym.2009.05.007
CAS
Article
Google Scholar
Vlakh EG, Tennikova TB (2007) Preparation of methacrylate monoliths. J Sep Sci 30:2801–2813. https://doi.org/10.1002/jssc.200700284
CAS
Article
PubMed
Google Scholar
Peters EC, Svec F, Fréchet JMJ (1997) Preparation of large-diameter “molded” porous polymer monoliths and the control of pore structure homogeneity. Chem Mater 9:1898–1902. https://doi.org/10.1021/cm970204n
CAS
Article
Google Scholar
Strancar A, Podgornik A, Barut M, Necina R (2002) Short monolithic columns as stationary phases for chromatography. In: Scheper T (ed) Advances in Biochemical Engineering & Biotechnology 76. Springer-Verlag, Berlin-Heidelberg, pp 49–85
Luo Y, Wang AN, Gao X (2015) One-pot interfacial polymerization to prepare polyHIPEs with functional surface. Colloid Polym Sci 293:1767–1779. https://doi.org/10.1007/s00396-015-3567-y
Robinson JL, Moglia RS, Stuebben MC, McEnery MAP, Cosgriff-Hernandez E (2014) Achieving interconnected pore architecture in injectable polyHIPEs for bone tissue engineering. Tissue Eng Part A 20:1103–11012. https://doi.org/10.1089/ten.tea.2013.0319
CAS
Article
PubMed
PubMed Central
Google Scholar
Quell A, Bergolis B, Drenckhan W, Stubenrauch C (2016) How the locus of initiation influences the morphology and the pore connectivity of a monodisperse polymer foam. Macromolecules 49:5059–5067. https://doi.org/10.1021/acs.macromol.6b00494
CAS
Article
Google Scholar
Stubenrauch C, Menner A, Bismarck A, Drenckhan W (2018) Emulsion and foam templating—promising routes to tailor-made porous polymers. Angew Chem Int Ed 57:10024–10032. https://doi.org/10.1002/anie.201801466
CAS
Article
Google Scholar
Rezanavaz R, Fee CJ, Dimartino S (2018) GMA-based emulsion-templated solid foams: influence of co-crosslinker on morphology and mechanical properties. J Appl Polym Sci 135:46295. https://doi.org/10.1002/APP.46295
Article
Google Scholar
Wu R, Menner A, Bismarck A (2013) Macroporous polymers made from medium internal phase emulsion templates: effect of emulsion formulation on the pore structure of polyMIPEs. Polymer 54:5511–5517. https://doi.org/10.1016/j.polymer.2013.08.029
CAS
Article
Google Scholar