Skip to main content
Log in

Injectable hydrogels with improved mechanical property based on electrostatic associations

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The mechanical properties of injectable and thermo-responsive ABC triblock copolymer hydrogels are enhanced by the electrostatic attraction between oppositely charged moieties introduced in the mid-blocks. The triblock copolymers are composed of biodegradable poly(ε-caprolactone) (PCL), hydrophilic cationic or anionic mid-block, and temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) with quadruple hydrogen bonding units. PCL blocks and PNIPAM blocks form separate micellar cores, and the mid-blocks make a bridge between the cores. The dynamic nature and thermo-responsiveness of the PNIPAM block primarily endow the temperature- and shear-responsiveness to the hydrogel, and therefore make the hydrogel injectable and self-healable. In particular, the electrostatic attraction introduced in the mid-blocks results in the enhanced mechanical properties of the hydrogels. The dual-responsive hydrogel with the improved moduli will aid in designing soft materials in the field of biological and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li Y, Ye Z, Shen L, Xu Y, Zhu A, Wu P, An Z (2016) Formation of multidomain hydrogels via thermally induced assembly of PISA-generated triblock terpolymer nanogels. Macromolecules 49(8):3038–3048

    Article  CAS  Google Scholar 

  2. Kitazawa Y, Ueki T, McIntosh LD, Tamura S, Niitsuma K, Imaizumi S, Lodge TP, Watanabe M (2016) Hierarchical sol–gel transition induced by thermosensitive self-assembly of an ABC triblock polymer in an ionic liquid. Macromolecules 49(4):1414–1423

    Article  CAS  Google Scholar 

  3. Onoda M, Ueki T, Tamate R, Akimoto AM, Hall CC, Lodge TP, Yoshida R (2018) Precisely tunable sol–gel transition temperature by blending thermoresponsive ABC triblock terpolymers. ACS Macro Lett 7(8):950–955

    Article  CAS  Google Scholar 

  4. Bivigou-Koumba AM, Görnitz E, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2010) Thermoresponsive amphiphilic symmetrical triblock copolymers with a hydrophilic middle block made of poly(N-isopropylacrylamide): synthesis, self-organization, and hydrogel formation. Colloid Polym Sci 288(5):499–517

    Article  CAS  Google Scholar 

  5. Huynh CT, Nguyen MK, Lee DS (2011) Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules 44(17):6629–6636

    Article  CAS  Google Scholar 

  6. He C, Kim SW, Lee DS (2008) In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 127(3):189–207

    Article  CAS  Google Scholar 

  7. Yin X, Hoffman AS, Stayton PS (2006) Poly (N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 7(5):1381–1385

    Article  CAS  Google Scholar 

  8. Zhang ZX, Liu KL, Li J (2013) A thermoresponsive hydrogel formed from a star–star supramolecular architecture. Angew Chem Int Ed 52(24):6180–6184

    Article  CAS  Google Scholar 

  9. Zhang M, Vora A, Han W, Wojtecki RJ, Maune H, Le ABA, Thompson LE, McClelland GM, Ribet F, Engler AC, Nelson A (2015) Dual-responsive hydrogels for direct-write 3D printing. Macromolecules 48(18):6482–6488

    Article  CAS  Google Scholar 

  10. Chen Y, Gao Y, da Silva LP, Pirraco RP, Ma M, Yang L, Reis RL, Chen J (2018) A thermo-/pH-responsive hydrogel (PNIPAM-PDMA-PAA) with diverse nanostructures and gel behaviors as a general drug carrier for drug release. Polym Chem 9(29):4063–4072

    Article  CAS  Google Scholar 

  11. Wang H, Zhu D, Paul A, Cai L, Enejder A, Yang F, Heilshorn SC (2017) Covalently adaptable elastin-like protein-hyaluronic acid (ELP-HA) hybrid hydrogels with secondary thermoresponsive crosslinking for injectable stem cell delivery. Adv Funct Mater 27(28):1605609

    Article  Google Scholar 

  12. Li C, Buurma NJ, Haq I, Turner C, Armes SP, Castelletto V, Hamley IW, Lewis AL (2005) Synthesis and characterization of biocompatible, thermoresponsive ABC and ABA triblock copolymer gelators. Langmuir 21(24):11026–11033

    Article  CAS  Google Scholar 

  13. Zhou C, Hillmyer MA, Lodge TP (2012) Efficient formation of multicompartment hydrogels by stepwise self-assembly of thermoresponsive ABC triblock terpolymers. J Am Chem Soc 134(25):10365–10368

    Article  CAS  Google Scholar 

  14. Zhou C, Toombes GE, Wasbrough MJ, Hillmyer MA, Lodge TP (2015) Structure of two-compartment hydrogels from thermoresponsive ABC triblock terpolymers. Macromolecules 48(16):5934–5943

    Article  CAS  Google Scholar 

  15. Gupta MK, Martin JR, Werfel TA, Shen T, Page JM, Duvall CL (2014) Cell protective, ABC triblock polymer-based thermoresponsive hydrogels with ROS-triggered degradation and drug release. J Am Chem Soc 136(42):14896–14902

    Article  CAS  Google Scholar 

  16. Gupta MK, Martin JR, Dollinger BR, Hattaway ME, Duvall CL (2017) Thermogelling, ABC triblock copolymer platform for resorbable hydrogels with tunable, degradation-mediated drug release. Adv Funct Mater 27(47):1704107

    Article  Google Scholar 

  17. Song M-M, Wang Y-M, Wang B, Liang X-Y, Chang Z-Y, Li B-J, Zhang S (2018) Super tough, ultrastretchable hydrogel with multistimuli responsiveness. ACS Appl Mater Interfaces 10(17):15021–15029

    Article  CAS  Google Scholar 

  18. Zhang HJ, Sun TL, Zhang AK, Ikura Y, Nakajima T, Nonoyama T, Kurokawa T, Ito O, Ishitobi H, Gong JP (2016) Tough physical double-network hydrogels based on amphiphilic triblock copolymers. Adv Mater 28(24):4884–4890

    Article  CAS  Google Scholar 

  19. Henderson KJ, Zhou TC, Otim KJ, Shull KR (2010) Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43(14):6193–6201

    Article  CAS  Google Scholar 

  20. Fan H, Wang J, Jin Z (2018) Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer–tannic acid multiple hydrogen bonds. Macromolecules 51(5):1696–1705

    Article  CAS  Google Scholar 

  21. Chantasirichot S, Inoue Y, Ishihara K (2014) Amphiphilic triblock phospholipid copolymers bearing phenylboronic acid groups for spontaneous formation of hydrogels with tunable mechanical properties. Macromolecules 47(9):3128–3135

    Article  CAS  Google Scholar 

  22. Noro A, Ishihara K, Matsushita Y (2011) Nanophase-separated supramolecular assemblies of two functionalized polymers via acid–base complexation. Macromolecules 44(16):6241–6244

    Article  CAS  Google Scholar 

  23. Zhang G, Chen Y, Deng Y, Ngai T, Wang C (2017) Dynamic supramolecular hydrogels: regulating hydrogel properties through self-complementary quadruple hydrogen bonds and thermo-switch. ACS Macro Lett 6(7):641–646

    Article  CAS  Google Scholar 

  24. Koppel DE (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys 57(11):4814–4820

    Article  CAS  Google Scholar 

  25. Lee Y, Hanif S, Theato P, Zentel R, Lim J, Char K (2015) Facile synthesis of fluorescent polymer nanoparticles by covalent modification–nanoprecipitation of amine-reactive ester polymers. Macromol Rapid Commun 36(11):1089–1095

    Article  CAS  Google Scholar 

  26. Kurniasih IN, Liang H, Mohr PC, Khot G, Rabe JP, Mohr A (2015) Nile red dye in aqueous surfactant and micellar solution. Langmuir 31(9):2639–2648

    Article  CAS  Google Scholar 

  27. Beijer FH, Sijbesma RP, Kooijman H, Spek AL, Meijer E (1998) Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. J Am Chem Soc 120(27):6761–6769

    Article  CAS  Google Scholar 

  28. Lewis CL, Anthamatten M (2013) Synthesis, swelling behavior, and viscoelastic properties of functional poly(hydroxyethyl methacrylate) with ureidopyrimidinone side-groups. Soft Matter 9(15):4058

    Article  CAS  Google Scholar 

  29. Cui J, del Campo A (2012) Multivalent H-bonds for self-healing hydrogels. Chem Commun 48(74):9302–9304

    Article  CAS  Google Scholar 

  30. Lutz JF (2008) Polymerization of oligo (ethylene glycol)(meth) acrylates: toward new generations of smart biocompatible materials. J Polym Sci A Polym Chem 46(11):3459–3470

    Article  CAS  Google Scholar 

  31. Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26(10):2496–2500

    Article  CAS  Google Scholar 

  32. Li L, Yan B, Yang J, Chen L, Zeng H (2015) Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Adv Mater 27(7):1294–1299

    Article  CAS  Google Scholar 

  33. Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12(10):932–937

    Article  CAS  Google Scholar 

  34. Choong GY, De Focatiis DS, Hassell DG (2013) Viscoelastic melt rheology and time–temperature superposition of polycarbonate–multi-walled carbon nanotube nanocomposites. Rheol Acta 52(8–9):801–814

    Article  CAS  Google Scholar 

  35. Abedalwafa M, Wang F, Wang L, Li C (2013) Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci 34(2):123–140

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Creative Research Initiative Program for “Intelligent Hybrids Research Center” (No. 2010-0018290) through the National Research Foundation of Korea (NRF) Grant funded by the Korean Ministry of Science, ICT & Future Planning (MSIP), and the BK21 Plus Program in SNU Chemical Engineering. S.C. also acknowledges the National Research Foundation (NRF) Grant funded by the Korean Government (No. NRF-2016R1C1B3010402 and NRF-2018R1A5A1024127).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo-Hyung Choi or Kookheon Char.

Ethics declarations

Conflict of interests

The authors declare that they have no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 827 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Yoon, J., Ahn, K.H. et al. Injectable hydrogels with improved mechanical property based on electrostatic associations. Colloid Polym Sci 299, 575–584 (2021). https://doi.org/10.1007/s00396-020-04726-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04726-0

Keywords

Navigation