Skip to main content
Log in

A novel photocurable modified epoxy resin for high heat resistance coatings

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, in order to further improve the heat resistance of UV-curing epoxy cresol novolac (EOCN), 2,2-bis(hydroxymethyl)propionic acid (DMPA) was firstly introduced to open epoxy groups in EOCN and then the hydroxyl groups reacted with acryloyl chloride to make sure the resin has sufficient UV-curing double bonds. Compared with the system that uses acrylic acid to open epoxy group and the secondary hydroxyl group reacting with unsaturated anhydride, up to 1.5 times double bonds were potentially introduced. The structure of the resins was characterized by FT-IR and 1H-NMR. Influences of double bond content on thermal behavior, photopolymerization kinetic behavior, and basic properties of the cured films were investigated. Thermal performance analysis demonstrated that the glass transition and the initial decomposition of the cured films were increased with the rising proportion of acryloyl group. Moreover, doping of abundant acryloyl chloride caused a significant increase of unsaturated double bond conversion, though the initial photopolymerization rates declined. Cured films with less acryloyl chloride modified showed better adhesive. For solvent-resistant test, with the increase of the acryloyl group, the cured film displayed good resistance to strong acids and alkalis. These attractive features give this process potential applications in soldering ink and protective coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shen L, Li Y, Zheng J, Lu M, Wu K (2015) Modified epoxy acrylate resin for photocurable temporary protective coatings. Prog Org Coat 89:17–25. https://doi.org/10.1016/j.porgcoat.2015.07.022

    Article  CAS  Google Scholar 

  2. Liu R, Zhang XP, Zhu JJ, Liu XY, Wang Z, Yan JL (2015) UV-curable coatings from multiarmed cardanol-based acrylate oligomers. ACS Sustain Chem Eng 3(7):1313–1320. https://doi.org/10.1021/acssuschemeng.5b00029

    Article  CAS  Google Scholar 

  3. Compston P, Schiemer J, Cvetanovska A (2008) Mechanical properties and styrene emission levels of a UV-cured glass-fibre/vinylester composite. Compos Struct 86(1–3):22–26. https://doi.org/10.1016/j.compstruct.2008.03.012

    Article  Google Scholar 

  4. Park YJ, Lim DH, Kim HJ, Park DS, Sung IK (2009) UV- and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. Int J Adhes Adhes 29(7):710–717. https://doi.org/10.1016/j.ijadhadh.2009.02.001

    Article  CAS  Google Scholar 

  5. Hu Z, Li YY, Xu XR, Yuan WH, Yang L, Shao Q, Guo ZH, Ding T, Huang YD (2019) Efficient intrinsic self-healing epoxy acrylate formed from host-guest chemistry. Polymer 164:79–85. https://doi.org/10.1016/j.polymer.2019.01.010

    Article  CAS  Google Scholar 

  6. Deore B, Paquet C, Kell AJ, Lacelle T, Liu XY, Mozenson O, Lopinski G, Brzezina G, Guo C, Lafreniere S, Malenfant PRL (2019) Formulation of screen-printable cu molecular ink for conductive/flexible/solderable Cu traces. ACS Appl Mater Interfaces 11(42):38880–38894. https://doi.org/10.1021/acsami.9b08854

    Article  CAS  PubMed  Google Scholar 

  7. Choi GM, Jin J, Shin D, Kim YH, Ko JH, Im HG, Jang J, Jang D, Bae BS (2017) Flexible hard coating: glass-like wear resistant, yet plastic-like compliant, transparent protective coating for foldable displays. Adv Mater 29(19):7. https://doi.org/10.1002/adma.201700205

    Article  CAS  Google Scholar 

  8. Ge Z, Zhang WG, Huang C, Luo YJ (2018) Study on epoxy resin toughened by epoxidized hydroxy-terminated polybutadiene. Materials 11(6):16. https://doi.org/10.3390/ma11060932

    Article  CAS  Google Scholar 

  9. Cao J, Fan H, Li BG, Zhu SP (2017) Synthesis and evaluation of double-decker silsesquioxanes as modifying agent for epoxy resin. Polymer 124:157–167. https://doi.org/10.1016/j.polymer.2017.07.056

    Article  CAS  Google Scholar 

  10. Shnawa HA, Khalaf MN, Jahani Y (2018) Thermal degradation, dynamic mechanical and morphological properties of PVC stabilized with natural polyphenol-based epoxy resin. Polym Bull 75(8):3473–3498. https://doi.org/10.1007/s00289-017-2220-y

    Article  CAS  Google Scholar 

  11. Yu B, Tao YJ, Liu L, Shi YQ, Yang HY, Jie GX, Lo SM, Tai QL, Song L, Hu Y (2015) Thermal and flame retardant properties of transparent UV-curing epoxy acrylate coatings with POSS-based phosphonate acrylate. RSC Adv 5(92):75254–75262. https://doi.org/10.1039/c5ra11805k

    Article  CAS  Google Scholar 

  12. Jiang MQ, Liu Y, Cheng C, Zhou JL, Liu BH, Yu MH, Zhang H (2018) Enhanced mechanical and thermal properties of monocomponent high performance epoxy resin by blending with hydroxyl terminated polyethersulfone. Polym Test 69:302–309. https://doi.org/10.1016/j.polymertesting.2018.05.039

    Article  CAS  Google Scholar 

  13. Zhao M, Meng LH, Ma LC, Ma LN, Yang XB, Huang YD, Ryu JE, Shankar A, Li TX, Yan C, Guo ZH (2018) Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Compos Sci Technol 154:28–36. https://doi.org/10.1016/j.compscitech.2017.11.002

    Article  CAS  Google Scholar 

  14. Liu D, Wu GM, Kong ZW (2017) Preparation and characterization of a polydimethylsiloxane-modified, epoxy-resin-based polyol dispersion and its crosslinked films. J Appl Polym Sci 134(1):8. https://doi.org/10.1002/app.44342

    Article  CAS  Google Scholar 

  15. Jishkariani D, Diroll BT, Cargnello M, Klein DR, Hough LA, Murray CB, Donnio B (2015) Dendron-mediated engineering of interparticle separation and self-assembly in dendronized gold nanoparticles superlattices. J Am Chem Soc 137(33):10728–10734. https://doi.org/10.1021/jacs.5b06306

    Article  CAS  PubMed  Google Scholar 

  16. Konwar U, Karak N, Mandal M (2009) Mesua ferrea L. seed oil based highly thermostable and biodegradable polyester/clay nanocomposites. Polym Degrad Stab 94(12):2221–2230. https://doi.org/10.1016/j.polymdegradstab.2009.09.001

    Article  CAS  Google Scholar 

  17. Luo T, Xu HS, Liu YY (2019) Aqueous synthesis of 3,4-dihydropyridinones from acryloyl chloride and enaminones by domino amidation and intramolecular Michael addition. ChemistrySelect 4(36):10621–10623. https://doi.org/10.1002/slct.201902898

    Article  CAS  Google Scholar 

  18. Dayyani N, Khoee S, Ramazani A (2015) Design and synthesis of pH-sensitive polyamino-ester magneto-dendrimers: surface functional groups effect on viability of human prostate carcinoma cell lines DU145. Eur J Med Chem 98:190–202. https://doi.org/10.1016/j.ejmech.2015.05.028

    Article  CAS  PubMed  Google Scholar 

  19. Dharani M, Balasubramanian S (2016) Synthesis, characterization and application of acryloyl chitosan anchored copolymer towards algae flocculation. Carbohydr Polym 152:459–467. https://doi.org/10.1016/j.carbpol.2016.07.031

    Article  CAS  Google Scholar 

  20. Zhang M, Zhang C, Du ZJ, Li HQ, Zou W (2017) Preparation of antistatic polystyrene superfine powder with polystyrene modified carbon nanotubes as antistatic agent. Compos Sci Technol 138:1–7. https://doi.org/10.1016/j.compscitech.2016.11.010

    Article  CAS  Google Scholar 

  21. Leggesse EG, Tong WR, Nachimuthu S, Chen TY, Jiang JC (2017) Theoretical study on photochemistry of Irgacure 907. J Photochem Photobiol A-Chem 347:78–85. https://doi.org/10.1016/j.jphotochem.2017.07.018

    Article  CAS  Google Scholar 

  22. Aliev R, Carreon-Castro MD, Rivera M, Burillo G (2004) Immobilization of disperse red 1 onto polydiethyleneglycol-bis-allylcarbonate (CR-39) radiation grafted with poly (acryloyl chloride). Polym Bull 52(1):73–82. https://doi.org/10.1007/s00289-004-0250-8

    Article  CAS  Google Scholar 

  23. Liang XY, Qiao H, Xu GL, Zhang YC, Liang Y, Hu J (2020) Flame-retardancy, thermal and coating properties of P-containing poly-acrylate resin cured with MF resin. Pigm Resin Technol 49(1):41–45. https://doi.org/10.1108/prt-04-2019-0035

    Article  CAS  Google Scholar 

  24. Gao QZ, Li HQ, Zeng XR (2011) Preparation and characterization of UV-curable hyperbranched polyurethane acrylate. J Coat Technol Res 8(1):61–66. https://doi.org/10.1007/s11998-010-9285-y

    Article  CAS  Google Scholar 

  25. Awaja F, Gilbert M, Kelly G, Fox B, Pigram PJ (2009) Adhesion of polymers. Prog Polym Sci 34(9):948–968. https://doi.org/10.1016/j.progpolymsci.2009.04.007

    Article  CAS  Google Scholar 

  26. Lee JH, Lee DW (2020) Contact-induced molecular rearrangement of acrylic acid-incorporated pressure sensitive adhesives. Appl Surf Sci 500:6. https://doi.org/10.1016/j.apsusc.2019.144246

    Article  CAS  Google Scholar 

  27. Seo J, Moon SW, Kang H, Choi BH, Seo JH (2019) Foldable and extremely scratch-resistant hard coating materials from molecular necklace-like cross-linkers. ACS Appl Mater Interfaces 11(30):27306–27317. https://doi.org/10.1021/acsami.9b05738

    Article  CAS  PubMed  Google Scholar 

  28. Ma YM, Lei R, Jiang YJ Synthesis and characteristics of Zanthoxylum bungeanum seed oil-based alkyd resin modified by epoxy resin and their blends with HMMM. Polym Bull:15. doi:https://doi.org/10.1007/s00289-019-02980-z

  29. Mulge S, Mestry S, Naik D, Mhaske S (2019) Phosphorus-containing reactive agent for UV-curable flame-retardant wood coating. J Coat Technol Res 16(5):1493–1502. https://doi.org/10.1007/s11998-019-00224-3

    Article  CAS  Google Scholar 

  30. Munyaneza E, Donnadieu B, Scott CN (2019) Synthesis and characterization of thermally stable bio-based poly (ester amide) s from sustainable feedstock. Eur Polym J 120:10. https://doi.org/10.1016/j.eurpolymj.2019.109228

    Article  CAS  Google Scholar 

  31. Bayou S, Mouzali M, Lecamp L, Lebaudy P (2017) Photoinitiated polymerization of a dental formulation: 1. Influence of photoinitiating system, temperature and luminous intensity. J Fundam Appl Sci 9(2):685–695. https://doi.org/10.4314/jfas.v9i2.5

    Article  CAS  Google Scholar 

  32. Zhang XH, Wang H, Wang L, Cui ZC, Yan DH (2010) A photosensitive copolymer for the gate insulator of organic thin-film transistors. Appl Phys A-Mater Sci Process 99(1):85–91. https://doi.org/10.1007/s00339-009-5514-6

    Article  CAS  Google Scholar 

  33. Bardi MAG, Munhoz MDL, de Oliveira HA, Auras R, Machado LDB (2014) Behavior of UV-cured print inks on LDPE and PBAT/TPS blend substrates during curing, postcuring, and accelerated degradation. J Appl Polym Sci 131(22):8. https://doi.org/10.1002/app.41116

    Article  CAS  Google Scholar 

  34. Chen JH, Peng KM, Tu WP (2019) Novel waterborne UV-curable coatings based on hyperbranched polymers via electrophoretic deposition. RSC Adv 9(20):11013–11025. https://doi.org/10.1039/c9ra01500k

    Article  CAS  Google Scholar 

  35. Andrzejewska E (2001) Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci 26(4):605–665. https://doi.org/10.1016/s0079-6700(01)00004-1

    Article  CAS  Google Scholar 

  36. Shenoy R, Bowman CN (2010) Mechanism and implementation of oxygen inhibition suppression in photopolymerizations by competitive photoactivation of a singlet oxygen sensitizer. Macromolecules 43(19):7964–7970. https://doi.org/10.1021/ma1012682

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute and Analytical & Testing Center of Sichuan University, for providing all tests.

Funding

This work was supported by Dongguan Yanmo Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, B., Zhang, J. A novel photocurable modified epoxy resin for high heat resistance coatings. Colloid Polym Sci 298, 1303–1312 (2020). https://doi.org/10.1007/s00396-020-04708-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04708-2

Keywords

Navigation