Skip to main content
Log in

Flow synthesis of monodisperse micron-sized polymer particles by heterogeneous polymerization using a water-in-oil slug flow with a non-ionic surfactant

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Flow synthesis of poly(methyl methacrylate) particles was performed by heterogeneous polymerization of methyl methacrylate using a water-in-oil (W/O) slug flow with or without a non-ionic surfactant in the continuous organic phase. It was found that undesired phenomena in this polymerization system, clogging of the channel and broadening particle size distribution, can occur when growing polymer particles adsorb to the W/O interface during polymerization, and that the addition of non-ionic surfactant to the continuous organic phase prevents the particles from adsorption to the W/O interface and gives monodisperse polymer particles. In addition, it was shown that as the initiator concentration increases, the particle diameter becomes larger, resulting in monodisperse micron-sized polymer particles with 100% monomer conversion at a 120-min reaction time. These results indicated that the heterogeneous polymerization process using a W/O slug flow can be a promising way to continuously prepare monodisperse polymer particles with micron sizes in a short reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article and its electronic supplementary material.

References

  1. Kawamura A, Kohri M, Morimoto G, Nannichi Y, Taniguchi T, Kishikawa K (2016) Full-color biomimetic photonic materials with iridescent and non-iridescent structural colors. Sci Rep 6:33984. https://doi.org/10.1038/srep33984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kohri M, Yanagimoto K, Kawamura A, Hamada K, Imai Y, Watanabe T, Ono T, Taniguchi T, Kishikawa K (2018) Polydopamine-based 3D colloidal photonic materials: structural color balls and fibers from melanin-like particles with polydopamine shell layers. ACS Appl Mater Interfaces 10:7640–7648. https://doi.org/10.1021/acsami.7b03453

    Article  CAS  PubMed  Google Scholar 

  3. Mikosch A, Ciftci S, Kuehne AJC (2016) Colloidal crystal lasers from monodisperse conjugated polymer particles via bottom-up coassembly in a sol–gel matrix. ACS Nano 10:10195–10201. https://doi.org/10.1021/acsnano.6b05538

    Article  CAS  PubMed  Google Scholar 

  4. Schoth A, Adurahim ES, Bahattab MA, Landfester K, Muñoz-Espí R (2016) Waterborne polymer/silica hybrid nanoparticles and their structure in coatings. Macromol React Eng 10:47–54. https://doi.org/10.1002/mren.201500029

    Article  CAS  Google Scholar 

  5. Shibuya K, Nagao D, Ishii H, Konnno M (2014) Advanced soap-free emulsion polymerization for highly pure, micron-sized, monodisperse polymer particles. Polymer 55:535–539. https://doi.org/10.1016/j.polymer.2013.12.039

    Article  CAS  Google Scholar 

  6. Yuan HG, Kalfas G, Ray WH (1991) Suspension polymerization. J Macromol Sci C 31:215–299. https://doi.org/10.1080/15321799108021924

    Article  Google Scholar 

  7. Kawaguchi S, Ito K (2005) Dispersion polymerization. Adv Polym Sci 175:299–328. https://doi.org/10.1007/b100118

    Article  CAS  Google Scholar 

  8. Nagao D, Sakamoto T, Konno H, Gu S, Konno M (2006) Preparation of micrometer-sized polymer particles with control of initiator dissociation during soap-free emulsion polymerization. Langmuir 22:10958–10962. https://doi.org/10.1021/la061451l

    Article  CAS  PubMed  Google Scholar 

  9. Song Z, Poehlein GW (1989) Particle nucleation in emulsifier-free aqueous-phase polymerization: stage 1. J Colloid Interface Sci 128:486–500. https://doi.org/10.1016/0021-9797(89)90364-0

    Article  CAS  Google Scholar 

  10. Dobie CG, Boodhoo KVK (2010) Surfactant-free emulsion polymerisation of methyl methacrylate and methyl acrylate using intensified processing methods. Chem Eng Process 49:901–911. https://doi.org/10.1016/j.cep.2010.08.005

    Article  CAS  Google Scholar 

  11. Wang K, Lu YC, Xia Y, Shao HW, Luo GS (2011) Kinetics research on fast exothermic reaction between cyclohexanecarboxylic acid and oleum in microreactor. Chem Eng J 169:290–298. https://doi.org/10.1016/j.cej.2011.02.072

    Article  CAS  Google Scholar 

  12. Jensen KF (2001) Microreaction engineering–is small better? Chem Eng Sci 56:293–303. https://doi.org/10.1016/S0009-2509(00)00230-X

    Article  CAS  Google Scholar 

  13. Kashid MN, Renken A, Kiwi-Minsker L (2011) Influence of flow regime on mass transfer in different types of microchannels. Ind Eng Chem Res 50:6906–6914. https://doi.org/10.1021/ie102200j

    Article  CAS  Google Scholar 

  14. Hessel V, Lowe H (2005) Organic synthesis with microstructured reactors. Chem Eng Technol 28:267–284. https://doi.org/10.1002/ceat.200407167

    Article  CAS  Google Scholar 

  15. Belimov M, Metzger D, Pfeifer P (2017) On the temperature control in a microstructured packed bed reactor for methanation of CO/CO2 mixtures. AICHE J 63:120–129. https://doi.org/10.1002/aic.15461

    Article  CAS  Google Scholar 

  16. Casquillas GV, Fu C, Le Berre M, Cramer J, Meance S, Plecis A, Baigl D, Greffet JJ, Chen Y, Piel M, Tran PT (2011) Fast microfluidic temperature control for high resolution live cell imaging. Lab Chip 11:484–489. https://doi.org/10.1039/c0lc00222d

    Article  CAS  Google Scholar 

  17. Nagaki A, Nakahara Y, Furusawa M, Sawaki T, Yamamoto T, Toukairin H, Tadokoro S, Shimazaki T, Ito T, Otake M, Arai H, Toda N, Ohtsuka K, Takahashi Y, Moriwaki Y, Tsuchihashi Y, Hirose K, Yoshida J (2016) Feasibility study on continuous flow controlled/living anionic polymerization processes. Org Process Res Dev 20:1377–1382. https://doi.org/10.1021/acs.oprd.6b00158

    Article  CAS  Google Scholar 

  18. Junkers T (2017) Precise macromolecular engineering via continuous-flow synthesis techniques. Macromol Chem Phys 218:106–110. https://doi.org/10.1556/1846.2017.00030

    Article  CAS  Google Scholar 

  19. Song Y, Shang M, Li G, Luo ZH, Su Y (2018) Influence of mixing performance on polymerization of acrylamide in capillary microreactors. AICHE J 64:1828–1840. https://doi.org/10.1002/aic.16046

    Article  CAS  Google Scholar 

  20. Ramsey BL, Pearson RM, Beck LR, Miyake GM (2017) Photoinduced organocatalyzed atom transfer radical polymerization using continuous flow. Macromolecules 50:2668–2674. https://doi.org/10.1021/acs.macromol.6b02791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu X, Lu Y, Luo G (2017) Continuous flow synthesis of polystyrene nanoparticles via emulsion polymerization stabilized by a mixed nonionic and anionic emulsifier. Ind Eng Chem Res 56:9489–9495. https://doi.org/10.1021/acs.iecr.7b02352

    Article  CAS  Google Scholar 

  22. Yadav AK, Barandiaran MJ, de la Cal JC (2014) Effect of the polymerization technique and reactor type on the poly(n-butyl acrylate) microstructure. Macromol React Eng 8:467–475. https://doi.org/10.1002/mren.201300159

    Article  CAS  Google Scholar 

  23. Chemtob A, Lobry E, Rannée A, Jasinski F, Penconi M, Oliveros E, Braun AM, Criqui A (2016) Flash latex production in a continuous helical photoreactor: releasing the brake pedal on acrylate chain radical polymerization. Macromol React Eng 10:261–268. https://doi.org/10.1002/mren.201500060

    Article  CAS  Google Scholar 

  24. Liu Z, Lu Y, Yang B, Luo G (2011) Controllable preparation of poly (butyl acrylate) by suspension polymerization in a coaxial capillary microreactor. Ind Eng Chem Res 50:11853–11862. https://doi.org/10.1021/ie201497b

    Article  CAS  Google Scholar 

  25. Song J, Zhang S, Wang K, Wang Y (2019) Synthesis of million molecular weight polyacrylamide with droplet flow microreactors. J Taiwan Inst Chem Eng 98:78–84. https://doi.org/10.1016/j.jtice.2018.05.008

    Article  CAS  Google Scholar 

  26. Seike Y, Kamio E, Ono T, Yoshizawa H (2007) Extraction of ethyl ester of polyunsaturated fatty acids by utilizing slug flow prepared by microreactor. J Chem Eng Jpn 40:1076–1084. https://doi.org/10.1252/jcej.07WE144

    Article  CAS  Google Scholar 

  27. Kamio E, Seike Y, Yoshizawa H, Matsuyama H, Ono T (2011) Microfluidic extraction of docosahexaenoic acid ethyl ester: comparison between slug flow and emulsion. Ind Eng Chem Res 50:6915–6924. https://doi.org/10.1021/ie102207c

    Article  CAS  Google Scholar 

  28. Kashid MN, Gerlach I, Goetz S, Franzke J, Acker JF, Platte F, Agar DW, Turek S (2011) Internal circulation within the liquid slugs of a liquid–liquid slug-flow capillary microreactor. Ind Eng Chem Res 44:5003–5010. https://doi.org/10.1021/ie0490536

    Article  CAS  Google Scholar 

  29. Muranaka Y, Nakagawa H, Masaki R, Maki T, Mae K (2017) Continuous 5-hydroxymethylfurfural production from monosaccharides in a microreactor. Ind Eng Chem Res 56:10998–11005. https://doi.org/10.1021/acs.iecr.7b02017

    Article  CAS  Google Scholar 

  30. Watanabe T, Karita K, Tawara K, Soga T, Ono T (2019) Rapid synthesis of poly (methyl methacrylate) particles with high molecular weight by soap-free emulsion polymerization using water-in-oil slug flow. Macromol Chem Phys 1900021:1900021. https://doi.org/10.1002/macp.201900021

    Article  CAS  Google Scholar 

  31. Sander JS, Studart AR (2014) Multiwalled functional colloidosomes made small and in large quantities via bulk emulsification. Soft Matter 10:60–68. https://doi.org/10.1039/C3SM51900G

    Article  CAS  PubMed  Google Scholar 

  32. Xiao J, Wang X, Gonzalez AJP, Huang Q (2016) Kafirin nanoparticles-stabilized Pickering emulsions: microstructure and rheological behavior. Food Hydrocoll 54:30–39. https://doi.org/10.1016/j.foodhyd.2015.09.008

    Article  CAS  Google Scholar 

  33. Asano S, Maki T, Nakayama R, Utsunomiya R, Muranaka Y, Kuboyama T, Mae K (2017) Precise analysis and control of polymerization kinetics using a micro flow reactor. Chem Eng Process 119:73–80. https://doi.org/10.1016/j.cep.2017.05.016

    Article  CAS  Google Scholar 

  34. Nagaki A, Miyazaki A, Yoshida J (2010) Synthesis of polystyrenes−poly (alkyl methacrylates) block copolymers via anionic polymerization using an integrated flow microreactor system. Macromolecules 43:8424–8429. https://doi.org/10.1021/ma101663x

    Article  CAS  Google Scholar 

  35. Yamamoto T, Fukushima T, Kanda Y, Higashitani K (2005) Molecular-scale observation of the surface of polystyrene particles by AFM. J Colloid Interface Sci 292:392–396. https://doi.org/10.1016/j.jcis.2005.05.095

    Article  CAS  PubMed  Google Scholar 

  36. Telford AM, Paham BTT, Neto C, Hawkett BS (2013) Micron-sized polystyrene particles by surfactant-free emulsion polymerization in air: synthesis and mechanism. J Polym Sci A 51:3997–4002. https://doi.org/10.1002/pola.26841

    Article  CAS  Google Scholar 

  37. Yamamoto T (2013) Synthesis of nearly micron-sized particles by soap-free emulsion polymerization of methacrylic monomer using an oil-soluble initiator. Colloid Polym Sci 291:2741–2744. https://doi.org/10.1007/s00396-013-3059-x

    Article  CAS  Google Scholar 

  38. Nagao D, Yamada Y, Inukai S, Ishii H, Konno M, Gu S (2015) Quantitative understanding of the self-sharpening of growing polymer particle size distributions in soap-free emulsion polymerization. Polymer 68:176–182

    Article  CAS  Google Scholar 

  39. Liu B, Fu Z, Han Y, Zhang M, Zhang H (2017) Facile synthesis of large sized and monodispersed polymer particles using particle coagulation mechanism: an overview. Colloid Polym Sci 295:749–757. https://doi.org/10.1007/s00396-017-4058-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Ono.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1731 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, T., Karita, K. & Ono, T. Flow synthesis of monodisperse micron-sized polymer particles by heterogeneous polymerization using a water-in-oil slug flow with a non-ionic surfactant. Colloid Polym Sci 298, 1273–1281 (2020). https://doi.org/10.1007/s00396-020-04705-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04705-5

Keywords

Navigation