Skip to main content
Log in

Physical and barrier properties of chemically modified pectin with polycaprolactone through an environmentally friendly process

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The paper reports the preparation of a novel material composed of pectin chemically modified with polycaprolactone (PCL). PCL was firstly functionalized through radical grafting of maleic anhydride and glycidyl methacrylate in the molten state and then used as grafting agent onto pectins from apple, using a solvent free process. The obtained material was submitted to melt process on laboratory scale and films obtained. Structural, thermal, mechanical, and barrier properties to water vapor were evaluated and compared with pure pectin and modified PCL’s films. The used strategy allowed to overcome the processability problems of a natural polymer, like pectin, that undergoes degradation with the temperature and is not processable without additives and plasticizers. The proposed green process represents a good opportunity to manufacture waste materials from fruits to obtain flexible and fully biodegradable polymers for food packaging applications, as interesting alternative to not biodegradable traditional thermoplastics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

    Article  CAS  Google Scholar 

  2. Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33:1819–1841

    Article  CAS  Google Scholar 

  3. Gorrasi G (2015) Dispersion of halloysite loaded with natural antimicrobials into pectins: characterization and controlled release analysis. Carbohydr Polym 127:47–53. https://doi.org/10.1016/j.carbpol.2015.03.050

    Article  CAS  PubMed  Google Scholar 

  4. Gorrasi G, Bugatti V (2016) Edible bio-nano-hybrid coatings for food protection based on pectins and LDH-salicylate: preparation and analysis of physical properties. LWT - Food Sci Technol 69:139–145. https://doi.org/10.1016/j.lwt.2016.01.038

    Article  CAS  Google Scholar 

  5. Bugatti V, Vertuccio L, Zara S, Fancello F, Scanu B, Gorrasi G (2019) Green pesticides based on cinnamate anion incorporated in layered double hydroxides and dispersed in pectin matrix. Carbohydr Polym 209:356–362. https://doi.org/10.1016/j.carbpol.2019.01.033

    Article  CAS  PubMed  Google Scholar 

  6. Zsivanovits G, Marudova M (2005) “Breeding of lines, cultivars and F1 hybrids of vegetable crops and potatoes with high potential of yield and quality” view project physical properties of fruits and vegetables view project. Springer 284:301–308. https://doi.org/10.1007/s00396-005-1378-2

    Article  CAS  Google Scholar 

  7. Galus S, Kadzińska J (2015) Food applications of emulsion-based edible films and coatings. Trends Food Sci Technol 45:273–283

    Article  CAS  Google Scholar 

  8. Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Technol 5:2058–2076

    Article  Google Scholar 

  9. Xu Q, Janaswamy S, Chen C et al (2016) 2016 cellulose film design of novel antimicrobial peptide view project beta-carotene from sweet potatoes view project a facile route to prepare cellulose-based films. Carbohydr Polym 149:274–281. https://doi.org/10.1016/j.carbpol.2016.04.114

    Article  CAS  PubMed  Google Scholar 

  10. Gorrasi G, Bugatti V, Vittoria V (2012) Pectins filled with LDH-antimicrobial molecules: preparation, characterization and physical properties. Carbohydr Polym 89:132–137. https://doi.org/10.1016/j.carbpol.2012.02.061

    Article  CAS  PubMed  Google Scholar 

  11. Han JH (2013) Edible films and coatings: a review. In: Innovations in Food Packaging2nd edn. Elsevier Ltd., pp 213–255

  12. Espitia PJP, Du WX, Avena-Bustillos R d J et al (2014) Edible films from pectin: physical-mechanical and antimicrobial properties - a review. Food Hydrocoll 35:287–296

    Article  CAS  Google Scholar 

  13. Materials – European Bioplastics e.V. https://www.european-bioplastics.org/bioplastics/materials/. Accessed 1 May 2020

  14. Peelman N, Ragaert P, De Meulenaer B et al (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32:128–141

    Article  CAS  Google Scholar 

  15. Laurienzo P, Malinconico M, Mattia G, Romano G (2006) Synthesis and characterization of functionalized crosslinkable poly(ε-caprolactone). Macromol Chem Phys 207:1861–1869. https://doi.org/10.1002/macp.200600262

    Article  CAS  Google Scholar 

  16. Monfregola L, Bugatti V, Amodeo P, de Luca S, Vittoria V (2011) Physical and water sorption properties of chemically modified pectin with an environmentally friendly process. Biomacromolecules 12:2311–2318. https://doi.org/10.1021/bm200376c

    Article  CAS  PubMed  Google Scholar 

  17. Gnanasambandam R, Proctor A (1999) Preparation of soy hull pectin. Food Chem 65:461–467. https://doi.org/10.1016/S0308-8146(98)00197-6

    Article  CAS  Google Scholar 

  18. Toncheva V (1996) Synthesis and environmental degradation of polyesters based on poly(ε-caprolactone). J Environ Polym Degrad 4:71–83. https://doi.org/10.1007/BF02074868

    Article  CAS  Google Scholar 

  19. Kowalonek J (2017) Studies of chitosan/pectin complexes exposed to UV radiation. Int J Biol Macromol 103:515–524. https://doi.org/10.1016/j.ijbiomac.2017.05.081

    Article  CAS  PubMed  Google Scholar 

  20. Monsoor MA, Kalapathy U, Proctor A (2001) Improved method for determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. J Agric Food Chem 49:2756–2760. https://doi.org/10.1021/jf0009448

    Article  CAS  PubMed  Google Scholar 

  21. Pucciariello R, Villani V, Belviso S, Gorrasi G, Tortora M, Vittoria V (2004) Phase behavior of modified Montmorillonite-poly(ε-caprolactone) nanocomposites. J Polym Sci B Polym Phys 42:1321–1332. https://doi.org/10.1002/polb.20028

    Article  CAS  Google Scholar 

  22. Mandal A, Polymers DC-C (2015) Undefined characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly (vinyl alcohol) & polyacrylamide composite films. Elsevier

  23. Persenaire O, Alexandre M, Degée P, Dubois P (2001) Mechanisms and kinetics of thermal degradation of poly(ε-caprolactone). Biomacromolecules 2:288–294. https://doi.org/10.1021/bm0056310

    Article  CAS  PubMed  Google Scholar 

  24. Einhorn-Stoll U, Kunzek H (2009) The influence of the storage conditions heat and humidity on conformation, state transitions and degradation behaviour of dried pectins. Food Hydrocoll 23:856–866. https://doi.org/10.1016/j.foodhyd.2008.05.001

    Article  CAS  Google Scholar 

  25. Einhorn-Stoll U, Kunzek H (2009) Thermoanalytical characterisation of processing-dependent structural changes and state transitions of citrus pectin. Food Hydrocoll 23:40–52. https://doi.org/10.1016/j.foodhyd.2007.11.009

    Article  CAS  Google Scholar 

  26. D’Aniello C, Guadagno L, Gorrasi G, Vittoria V (2000) Influence of the crystallinity on the transport properties of isotactic polypropylene. Polymer (Guildf) 41:2515–2519. https://doi.org/10.1016/S0032-3861(99)00404-8

    Article  Google Scholar 

  27. Hopfenberg HB, Stannett V (1973) The diffusion and sorption of gases and vapours in glassy polymers. The Physics of Glassy Polymers. Springer, Netherlands, pp 504–547

    Chapter  Google Scholar 

Download references

Acknowledgements

The project Prin 2017 “MultIFunctional poLymer cOmposites based on groWn matERials (MIFLOWER)” (grant number: 2017B7MMJ5_001) from the Italian Ministry of Education University and Research Project is kindly acknowledged.

The project: CronogardTM (H2020-SMEINST-2-2016-2017) (Grant agreement n. 783696) is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliana Gorrasi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorrasi, G., Bugatti, V., Viscusi, G. et al. Physical and barrier properties of chemically modified pectin with polycaprolactone through an environmentally friendly process. Colloid Polym Sci 299, 429–437 (2021). https://doi.org/10.1007/s00396-020-04699-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04699-0

Keywords

Navigation