Skip to main content

Self-diffusion of nanoscale particles with hard and soft sphere models

Abstract

The diffusion of particles in suspension is investigated by a thermostat based on fluctuating hydrodynamics for dynamic simulations of implicit-solvent coarse-grained model which can take into account both hydrodynamic and Brownian effects. Particles with cut-and-shifted Lennard-Jones and Gaussian-core potential are studied. The results show that their diffusion process can be characterized by three regimes: ballistic motion, short-time diffusion and long-time diffusion. We observe that the mean square displacement (MSD) of regime I, ballistic motion, is proportional to t2. For the other two regimes, its MSD is proportional to t with different slopes. Furthermore, we study the diffusion coefficients of spherical particles from MSD at different volume fractions. For the cut-and-shifted Lennard-Jones potential model, we observe the diffusion coefficients decrease monotonously with the increase of volume fraction (0.02–0.3), consistent with the results of the experiment. However, for the Gauss-core potential model, the curve of long-time self-diffusion coefficient as a function of dimensional density (0.001 to 1) appears to be nonmonotonic. It shows that the long-time self-diffusion coefficient decreases monotonically when the dimensional density is below 0.3, and then increases anomalously when the dimensionless density passes through 0.3.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Yu M, Qiao X, Dong X, Sun K (2018) Shear thickening effect of the suspensions of silica nanoparticles in PEG with different particle size, concentration and shear. Colloid Polym Sci 296(8):1–8

    Google Scholar 

  2. 2.

    Louis AA, Bolhuis PG, Hansen JP, Meijer EJ (2000) Can polymer coils be modelled as “soft colloids”? Phys Rev Lett 85(12):2522–2525

    CAS  PubMed  Google Scholar 

  3. 3.

    Likos CN, Rosenfeldt S, Dingenouts N, Ballauff M, Lindner P, Werner N, Vögtle F (2002) Gaussian effective interaction between flexible dendrimers of fourth generation: a theoretical and experimental study. J Chem Phys 117(4):1869–1877

    CAS  Google Scholar 

  4. 4.

    GöTze IO, Harreis HM, Likos CN (2004) Tunable effective interactions between dendritic macromolecules. J Chem Phys 120(16):7761–7771

    PubMed  Google Scholar 

  5. 5.

    Federica LV, Leonid Y, Egorov SA, Kurt B (2011) Interactions between polymer brush-coated spherical nanoparticles: the good solvent case. J Chem Phys 135(21):214902

    Google Scholar 

  6. 6.

    Kroeger A, Zhang B, Rosenauer C, Schlüter AD, Wegner C (2013) Solvent induced phenomena in a dendronized linear polymer. Colloid Polym Sci 291(12):2879–2892

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    von Bülow S, Siggel M, Linke M, Hummer G (2019) Dynamic cluster formation determines viscosity and diffusion in dense protein solutions. Proc Natl Acad Sci U S A 116(20):9843–9852

    Google Scholar 

  8. 8.

    Benke M, Shapiro E, Drikakis D (2008) An efficient multi-scale modelling approach for ssdna motion in fluid flow. J Bionic Eng 5(4):299–307

    Google Scholar 

  9. 9.

    Napoli M, Atzberger P, Pennathur S (2011) Experimental study of the separation behaviour of nanoparticles in micro- and nanochannels. Microfluid Nanofluid 10(1):69–80

    CAS  Google Scholar 

  10. 10.

    Cheng Z, Zhu J, Chaikin PM, See-Eng P, Russel WB (2002) Nature of the divergence in low shear viscosity of colloidal hard-sphere dispersions. Phys Rev E 65(4 Pt 1):041405

    Google Scholar 

  11. 11.

    Beenakker CWJ, Mazur P (1983) Self-diffusion of spheres in a concentrated suspension. Phys A 126(3):349–370

    Google Scholar 

  12. 12.

    Beenakker CWJ, Mazur P (1983) Diffusion of spheres in a concentrated suspension: Resummation of many-body hydrodynamic interactions. Phys Lett A 98(1):22–24

    Google Scholar 

  13. 13.

    Hoh NJ, Zia RN (2016) Force-induced diffusion in suspensions of hydrodynamically interacting colloids. J Fluid Mech 795:739–783

    CAS  Google Scholar 

  14. 14.

    Weeks JD, Chandler D, Andersen HC (1971) Role of repulsive forces in determining the equilibrium structure of simple liquids. J Chem Phys 54:5237

    CAS  Google Scholar 

  15. 15.

    Baskaran A, Marchetti MC (2009) Statistical mech-anics and hydrodynamics of bacterial suspensions. Proc Natl Acad Sci U S A 106(37):15567–15572

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lauga E (2016) Bacterial hydrodynamics. Annu Rev Fluid Mech 48(1):105–130

    Google Scholar 

  17. 17.

    Stillinger FH (1976) Phase transitions in the Gaussian core system. J Chem Phys 65(10):3968–3974

    CAS  Google Scholar 

  18. 18.

    Shall LA, Egorov SA (2010) Structural and dynamical anomalies of a Gaussian core fluid: a mode-coupling theory study. J Chem Phys 132(18):3968

    Google Scholar 

  19. 19.

    Mausbach P, May HO (2006) Static and dynamic anomalies in the Gaussian core model liquid. Fluid Phase Equilib 249(1):17–23

    CAS  Google Scholar 

  20. 20.

    Wensink HH, Löwen H, Rex M, Likos CN, Van Teeffelen S (2008) Long-time self-diffusion for Brownian Gaussian-core particles. Comput Phys Comm 179(1–3):77–81

    CAS  Google Scholar 

  21. 21.

    Lang A, Likos CN, Watzlawek M, Löwen H (2000) Fluid and solid phases of the Gaussian core model. J Phys:Condens Matt 12(24):5087–5108

    CAS  Google Scholar 

  22. 22.

    Einstein A (1906) Zur theorie der brownschen bewegung. Ann Phys 324(2):371–381

    Google Scholar 

  23. 23.

    Kovalchuk NM, Kuchin I, Starov V, Uriev N (2010) Aggregation in colloidal suspensions and its influence on the suspension viscosity. Colloid J 72(3):379–388

    CAS  Google Scholar 

  24. 24.

    Segrѐ PN, Behrend OP, Pusey PN (1995) Short-time Brownian motion in colloidal suspensions: experiment and simulation. Phys Rev E 52(5):5070–5083

    Google Scholar 

  25. 25.

    Heinen M, Banchio AJ, NäGele G (2011) Short-time rheology and diffusion in suspensions of yukawa type colloidal particles. J Chem Phys 135(15):5460–2324

    Google Scholar 

  26. 26.

    Banchio AJ, Heinen H, Holmqvist P, Näqele G (2017) Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles. J Chem Phys 148(13):134902

    Google Scholar 

  27. 27.

    Ando T, Skolnick J (2010) Crowding and hydro-dynamic interactions likely dominate in vivo macromolecular motion. Proc Natl Acad Sci U S A 107(43):18457–18462

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Malevanets A, Kapral R (1999) Mesoscopic model for solvent dynamics. J Chem Phys 110(17):8605–8613

    CAS  Google Scholar 

  29. 29.

    Brady JF, Bossis G (1988) Stokesian dynamics. Annu Rev Fluid Mech 20(1):111–157

    Google Scholar 

  30. 30.

    Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435

    CAS  Google Scholar 

  31. 31.

    Goddard BD, Nold A, Kalliadasis S (2013) Multi-species dynamical density functional theory. J Chem Phys 138(14):14490

    Google Scholar 

  32. 32.

    Wang Y, Sigurdsson JK, Atzberger PJ (2016) Fluctuating hydrodynamics methods for dynamic coarse-grained implicit-solvent simulations in lammps. SIAM J Sci Comput 8(5):S62–S77

    Google Scholar 

  33. 33.

    Plimpton S (1995) Fast parallel algorithms for short range molecular dynamics. J Comput Phys 117(1):1–19

    CAS  Google Scholar 

  34. 34.

    Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Google Scholar 

  35. 35.

    Atzberger PJ (2011) Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations. J Comput Phys 230(8):2821–2837

    CAS  Google Scholar 

  36. 36.

    Bian X, Kim C, Karniadakis GE (2016) 111 years of Brownian motion. Soft Matter 12:6331–6346

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ottewill RH, Williams NSJ (1987) Study of particle motion in concentrated dispersions by tracer diffusion. Nature 325:232–234

    CAS  Google Scholar 

  38. 38.

    Phillips RJ, Brady JF, Bossis G (1988) Hydro-dynamic transport properties of hard-sphere dispersions. i. Suspensions of freely mobile particles. Phys Fluids 31(12):3462–3472

    CAS  Google Scholar 

  39. 39.

    Kümmel F, ten Hagen B, Wittkowski R, Buttinoni ER, Volpe G, Löwen H, Bechinger C (2013) Circular motion of asymmetric self-propelling particles. Phys Rev Lett 110(19):198302

    PubMed  Google Scholar 

  40. 40.

    Schwarz-Linek J, Valeriani C, Cacciuto A, Cates ME, Marenduzzo D, Morozov AN, Poon WCK (2012) Phase separation and rotor self-assembly in active particle suspensions. Proc Natl Acad Sci U S A 109(11):4052–4057

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Peruani F, Deutsch A, Bär M (2006) Nonequilibrium clustering of self-propelled rods. Phys Rev E 74(1):030904

    Google Scholar 

  42. 42.

    Pham-Van H, Luc-Huy H, Nguyen-Minh T (2018) Templat-assisted assembly of asymmetric colloidal dumbbells into desirable cluster structures. Colloid Polym Sci 296(8):1387–1394

    CAS  Google Scholar 

  43. 43.

    Park BS, Jung KI, Lee SJ, Lee KY, Jung HW (2018) Effect of particle shape on drying dynamics in suspension drops using multi-speckle diffusing wave spectroscopy. Colloid Polym Sci 296(5):971–979

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (11601381).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yaohong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Wang, Y. Self-diffusion of nanoscale particles with hard and soft sphere models. Colloid Polym Sci 298, 579–585 (2020). https://doi.org/10.1007/s00396-020-04643-2

Download citation

Keywords

  • Brownian motion
  • Nanoparticles
  • Self-diffusion
  • Suspensions