Skip to main content
Log in

Preparation of hollow silica nanoparticles using cationic spherical polyelectrolyte brushes as catalytic template

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This paper presents a facile procedure to fabricate uniform-sized hollow silica nanoparticles (SNP) under a mild condition by using cationic spherical polyelectrolyte brushes (SPB) with a polystyrene (PS) core and densely grafted poly(2-aminoethyl methacrylate hydrochloride) (PAEMH) brush shell as a catalytic template. By changing the brush layer thickness of SPB, hollow SNP with different silica shell thickness could be easily obtained. This method provides a new way for the preparation of hollow SNP without additional catalyst. The obtained hollow SNP exhibited a high-drug encapsulation efficiency (80%) for doxorubicin hydrochloride (DOX), should be of significance in the fields of drug delivery, cancer therapy, and bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu MY, Meng QS, Chen Y, Zhang LX, Li ML, Cai XJ, Li YP, Yu PC, Zhang LL, Shi JL (2016) Large pore-sized hollow mesoporous organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy. Adv Mater 28(10):1963–1969. https://doi.org/10.1002/adma.201505524

    Article  CAS  PubMed  Google Scholar 

  2. Hao NJ, Nie Y, Xu Z, Closson AB, Usherwood T, Zhang JXJ (2019) Microfluidic continuous flow synthesis of functional hollow spherical silica with hierarchical sponge-like large porous shell. Chem Eng J 366:433–438. https://doi.org/10.1016/j.cej.2019.02.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen M, Wu LM, Zhou SX, You B (2006) A method for the fabrication of monodisperse hollow silica spheres. Adv Mater 18(6):801–806. https://doi.org/10.1002/adma.200501528

    Article  CAS  Google Scholar 

  4. Zhao YY, Zhuang QY, Li WD, Peng HR, Li GC, Zhang ZH (2019) Encapsulation of few-layer MoS2 in the pores of mesoporous carbon hollow spheres for lithium-sulfur batteries. Nanomaterials 9(9):1247. https://doi.org/10.3390/nano9091247

    Article  CAS  PubMed Central  Google Scholar 

  5. Fu ZN, Li L, Wang YM, Chen QL, Zhao F, Dai LH, Chen Z, Liu DH, Guo XH (2020) Direct preparation of drug-loaded mesoporous silica nanoparticles by sequential flash nanoprecipitation. Chem Eng J 382:122905. https://doi.org/10.1016/j.cej.2019.122905

    Article  CAS  Google Scholar 

  6. Gao YH, Zhang YH, He S, Xiao YN, Qin XY, Zhang Y, Li DL, Ma HJ, You H, Li JH (2019) Fabrication of a hollow mesoporous silica hybrid to improve the targeting of a pesticide. Chem Eng J 364:361–369. https://doi.org/10.1016/j.cej.2019.01.105

    Article  CAS  Google Scholar 

  7. Teng ZG, Li W, Tang YX, Elzatahry A, Lu GM, Zhao DY (2019) Mesoporous organosilica hollow nanoparticles: synthesis and applications. Adv Mater 31(38):1707612. https://doi.org/10.1002/adma.201707612

    Article  CAS  Google Scholar 

  8. Park SS, Ha CS (2018) Hollow mesoporous functional hybrid materials: fascinating platforms for advanced applications. Adv Funct Mater 28(27):1703814. https://doi.org/10.1002/adfm.201703814

    Article  CAS  Google Scholar 

  9. Khanal A, Inoue Y, Yada M, Nakashima K (2007) Synthesis of silica hollow nanoparticles templated by polymeric micelle with core–shell–corona structure. J Am Chem Soc 129(6):1534–1535. https://doi.org/10.1021/ja0684904

    Article  CAS  PubMed  Google Scholar 

  10. Zhu YF, Shi JL, Shen WH, Dong XP, Feng JW, Ruan ML, Li YS (2005) Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core shell structure. Angew Chem 44(32):5083–5087. https://doi.org/10.1002/anie.200501500

    Article  CAS  Google Scholar 

  11. Wu SH, Mou CY, Lin HP (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42(9):3862–3875 https://xs.scihub.ltd/10.1039/C3CS35405A

    Article  CAS  Google Scholar 

  12. Niu DC, Li YS, Shi JL (2017) Silica/organosilica cross-linked block copolymer micelles: a versatile theranostic platform. Chem Soc Rev 46(3):569–585 https://xs.scihub.ltd/10.1039/C6CS00495D

    Article  CAS  Google Scholar 

  13. Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114. https://doi.org/10.1126/science.282.5391.1111

    Article  CAS  PubMed  Google Scholar 

  14. Tan H, Liu NS, He BP, Wong SY, Chen ZK, Li X, Wang J (2009) Facile synthesis of hybrid silica nanocapsules by interfacial templating condensation and their application in fluorescence imaging. Chem Commun 41:6240–6242 https://xs.scihub.ltd/10.1039/B914366A

    Article  Google Scholar 

  15. Du JZ, Armes SP (2008) Preparation of primary amine-based block copolymer vesicles by direct dissolution in water and subsequent stabilization by sol−gel chemistry. Langmuir 24(23):13710–13716. https://doi.org/10.1021/la8025123

    Article  CAS  PubMed  Google Scholar 

  16. Yao DD, Chen YM, Jin RH (2015) Different dimensional silica materials prepared using shaped block copolymer nanoobjects as catalytic templates. J Mater Chem B 3(28):5786–5794 https://xs.scihub.ltd/10.1039/C5TB00589B

    Article  CAS  Google Scholar 

  17. Mullner M, Yuan JY, Weiss S, Walther A, Fortsch M, Drechsler M, Muller AHE (2010) Water-soluble organo-silica hybrid nanotubes templated by cylindrical polymer brushes. J Am Chem Soc 132(46):16587–16592. https://doi.org/10.1021/ja107132j

    Article  CAS  PubMed  Google Scholar 

  18. Zhang YM, Wang ZY, Matyjaszewski K, Pietrasik J (2019) Versatile PISA templates for tailored synthesis of nanoparticles. Eur Polym J 110:49–55. https://doi.org/10.1016/j.eurpolymj.2018.11.014

    Article  CAS  Google Scholar 

  19. Masoomi H, Wang Y, Fang XX, Wang PR, Chen C, Liu K, Gu HC, Xu H (2019) Ultrabright dye-loaded spherical polyelectrolyte brushes and their fundamental structure-fluorescence tuning principles. Nanoscale 11(29):14050–14059 https://xs.scihub.ltd/10.1039/C9NR02168J

    Article  CAS  Google Scholar 

  20. Lee J, Moesari E, Dandamudi CB, Beniah G, Chang B, Iqbal M, Fei YP, Zhou NJ, Ellison CJ, Johnston KP (2017) Behavior of spherical poly(2-acrylamido-2-methylpropanesulfonate) polyelectrolyte brushes on silica nanoparticles up to extreme salinity with weak divalent cation binding at ambient and high temperature. Macromolecules 50(19):7699–7711. https://doi.org/10.1021/acs.macromol.7b01243

    Article  CAS  Google Scholar 

  21. Wang WH, Li L, Henzler K, Lu Y, Wang JY, Han HY, Tian YC, Wang YW, Zhou ZM, Lotze G, Narayanan T, Ballauff M, Guo XH (2017) Protein immobilization onto cationic spherical polyelectrolyte brushes studied by small angle X-ray scattering. Biomacromolecules 18(5):1574–1581. https://doi.org/10.1021/acs.biomac.7b00164

    Article  CAS  PubMed  Google Scholar 

  22. Han HY, Li L, Wang WH, Tian YC, Wang YW, Wang JY, von Klitzing R, Guo XH (2017) Core−shell−corona silica hybrid nanoparticles templated by spherical polyelectrolyte brushes: a study by small angle X-ray scattering. Langmuir 33(38):9857–9865. https://doi.org/10.1021/acs.langmuir.7b02239

    Article  CAS  PubMed  Google Scholar 

  23. Han HY, Li L, Yang QS, Tian YC, Wang YW, Ye ZS, von Klitzing R, Guo XH (2018) Characterization of hollow silica–polyelectrolyte composite nanoparticles by small-angle X-ray scattering. J Mater Sci 53(5):3210–3224 https://xs.scihub.ltd/https://doi.org/10.1007/s10853-017-1747-5

    Article  CAS  Google Scholar 

  24. Yang QS, Li L, Zhao F, Han HY, Wang WH, Tian YC, Wang YW, Ye ZS, Guo XH (2019) Hollow silica-polyelectrolyte composite nanoparticles for controlled drug delivery. J Mater Sci 54(3):2552–2565 https://xs.scihub.ltd/https://doi.org/10.1007/s10853-018-2996-7

    Article  CAS  Google Scholar 

  25. Guo XH, Weiss A, Ballauff M (1999) Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization. Macromolecules 32(19):6043–6046. https://doi.org/10.1021/ma990609o

    Article  CAS  Google Scholar 

  26. Wang SY, Chen KM, Li L, Guo XH (2013) Binding between proteins and cationic spherical polyelectrolyte brushes: effect of pH, ionic strength, and stoichiometry. Biomacromolecules 14(3):818–827. https://doi.org/10.1021/bm301865g

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the NSFC (Grant nos.51761135128 and 51773061), the Key Scientific and Technological Project of Xinjiang Bingtuan (2018AB025), and the Fundamental Research Funds for the Central Universities (22221818010 and 222201917013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Z., Zhou, Q., Li, L. et al. Preparation of hollow silica nanoparticles using cationic spherical polyelectrolyte brushes as catalytic template. Colloid Polym Sci 298, 879–886 (2020). https://doi.org/10.1007/s00396-020-04627-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04627-2

Keywords

Navigation