Fabrication of inverse core–shell and Janus-structured microspheres of blends of poly(4-butyltriphenylamine) and poly(methyl methacrylate)

Abstract

We here report the facile fabrication of inverse core–shell and Janus structured particles consisting of poly(4-butyltriphenylamine) (PBTPA) and poly(methyl methacrylate) (PMMA) via a solvent evaporation from solution droplets of a polymer blend dispersed in an aqueous phase. Janus structured composite particles in which the PBTPA domain was partially coated by the PMMA domain were obtained using poly(vinyl alcohol) (PVA) as a suspension stabilizer. On the other hand, when sodium dodecyl sulfate (SDS) was added as a surfactant together with PVA, “inverse core–shell” particles in which the PMMA core was covered by the PBTPA shell were formed as well as Janus particles. TEM observation showed that the PMMA core was located at the center of the sphere and PBTPA layer has uniform thickness in inverse core–shell particles. The increase of the composition of PBTPA or the concentration of SDS increased the ratio of the inverse core–shell particles to the Janus ones.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Becu L, Maazouz A, Sautereau H, Gerard JF (1997) Fracture behavior of epoxy polymers modified with core-shell rubber particles. J Appl Polym Sci 65(12):2419–2431

    CAS  Article  Google Scholar 

  2. 2.

    Dong L, Tong Y, An Y, Tang H, Zhuang Y, Feng Z (1997) Study of the blends containing core-shell latex polymer. Eur Polym J 33(4):501–503

    CAS  Article  Google Scholar 

  3. 3.

    Maestrini C, Monti L, Kausch HH (1996) Influence of particle-craze interactions on the sub-critical fracture of core-shell HIPS. Polymer 37(9):1607–1619

    CAS  Article  Google Scholar 

  4. 4.

    Schneider M, Pith T, Lambla M (1996) The role of the morphology of natural rubber and polybutylacrylate-based composite latex particles on the toughness of polycarbonate/brittle polymer blends. Polym Adv Technol 7(5–6):425–436

    CAS  Article  Google Scholar 

  5. 5.

    Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(1–2):113–142

    CAS  Article  Google Scholar 

  6. 6.

    Sanders JV (1968) Diffraction of light by opals. Acta Cryst A24(4):427–434

    Article  Google Scholar 

  7. 7.

    Fudouzi H (2009) Optical properties caused by periodical array structure with colloidal particles and their applications. Adv Powder Technol 20(5):502–508

    CAS  Article  Google Scholar 

  8. 8.

    Gallei M (2017) Functional polymer opals and porous materials by shear-induced assembly of tailor-made particles. Macromol Rapid Commun 39(4):1700648

    Article  Google Scholar 

  9. 9.

    Moroz A, Sommers C (1999) Photonic band gaps of three-dimensional face-centred cubic lattices. J Phys Condens Matter 11(4):997–1008

    CAS  Article  Google Scholar 

  10. 10.

    Breen ML, Dinsmore AD, Pink RH, Qadri SB, Ratna BR (2001) Sonochemically produced ZnS-coated polystyrene core-shell particles for use in photonic crystals. Langmuir 17(3):903–907

    CAS  Article  Google Scholar 

  11. 11.

    Velikov KP, Moroz A, van Blaaderen A (2002) Photonic crystals of core-shell colloidal particles. Appl Phys Lett 80(1):49–51

    CAS  Article  Google Scholar 

  12. 12.

    Zulian L, Emilitri E, Scavia G, Botta C, Colombo M, Destri S (2012) Structural iridescent tuned colors from self-assembled polymer opal surfaces. ACS Appl Mater Interfaces 4(11):6071–6079

    CAS  Article  Google Scholar 

  13. 13.

    Spahn P, Finlayson CE, Etah WM, Snoswell DRE, Baumberg JJ, Hellmann GP (2011) Modification of the refractive-index contrast in polymer opal films. J Mater Chem 21(24):8893–8897

    CAS  Article  Google Scholar 

  14. 14.

    Stubbs J, Karlsson O, Jönsson JE, Sundberg E, Durant Y, Sundberg D (1999) Non-equilibrium particle morphology development in seeded emulsion polymerization. 1: penetration of monomer and radicals as a function of monomer feed rate during second stage polymerization. Colloids Surf A Physicochem Eng Asp 153(1–3):255–270

    CAS  Article  Google Scholar 

  15. 15.

    Karlsson LE, Karlsson OJ, Sundberg DC (2003) Nonequilibrium particle morphology development in seeded emulsion polymerization. II. Influence of seed polymer Tg. J Appl Polym Sci 90(4):905–915

    CAS  Article  Google Scholar 

  16. 16.

    Okubo M, Saito N, Fujibayashi T (2005) Preparation of polystyrene/poly(methyl methacrylate) composite particles having a dent. Colloid Polym Sci 283(6):691–698

    CAS  Article  Google Scholar 

  17. 17.

    Tanaka T, Nakatsuru R, Kagari Y, Saito N, Okubo M (2008) Effect of molecular weight on the morphology of polystyrene/poly(methyl methacrylate) composite particles prepared by the solvent evaporation method. Langmuir 24(21):12267–12271

    CAS  Article  Google Scholar 

  18. 18.

    Saito N, Kagari Y, Okubo M (2006) Effect of colloidal stabilizer on the shape of polystyrene/poly(methyl methacrylate) composite particles prepared in aqueous medium by the solvent evaporation method. Langmuir 22(22):9397–4902

    CAS  Article  Google Scholar 

  19. 19.

    Tanaka T, Okayama M, Okubo M (2010) Effect of polymer end group on the morphology of polystyrene/poly(methyl methacrylate) composite particles prepared by the solvent evaporation method. Macromol Symp 288(1):55–66

    CAS  Article  Google Scholar 

  20. 20.

    Ge X, Wang M, Ji X, Ge X, Liu H (2009) Effects of concentration of nonionic surfactant and molecular weight of polymers on the morphology of anisotropic polystyrene/poly(methyl methacrylate) composite particles prepared by solvent evaporation method. Colloid Polym Sci 287(7):819–827

    CAS  Article  Google Scholar 

  21. 21.

    Torza S, Mason SG (1970) Three-phase interactions in shear and electrical fields. J Colloid Interface Sci 33(1):67–83

    CAS  Article  Google Scholar 

  22. 22.

    Saito N, Kagari Y, Okubo M (2007) Revisiting the morphology development of solvent-swollen composite polymer particles at thermodynamic equilibrium. Langmuir 23(11):5914–5919

    CAS  Article  Google Scholar 

  23. 23.

    Tsuchiya K, Shimomura T, Ogino K (2009) Preparation of diblock copolymer based on poly(4-n-butyltriphenylamine) via palladium coupling polymerization. Polymer 50(1):95–101

    CAS  Article  Google Scholar 

  24. 24.

    Tsuchiya K, Kikuchi T, Songeun M, Shimomura T, Ogino K (2011) Synthesis of diblock copolymer consisting of poly(4-butyltriphenylamine) and morphological control in photovoltaic application. Polymers 3(3):1051–1064

    CAS  Article  Google Scholar 

  25. 25.

    Cao Z, Abe Y, Nagahama T, Tsuchiya K, Ogino K (2013) Synthesis and characterization of polytriphenylamine based graft polymers for photorefractive application. Polymer 54(1):269–276

    CAS  Article  Google Scholar 

  26. 26.

    Taherzadeh H, Ogino K (2015) Fabrication of microspheres based on poly(4-butyltriphenylamine) blends with poly(methyl methacrylate) and block copolymer by solvent evaporation method. Open J Org Polym Mater 5(2):37–42

    CAS  Article  Google Scholar 

  27. 27.

    Yoshida S, Kikuchi S, Kanehashi S, Okamoto K, Ogino K (2018) Microfluidic fabrication of morphology-controlled polymeric microspheres of blends of poly(4-butyltriphenylamine) and poly(methyl methacrylate). Materials 11(4):582

    Article  Google Scholar 

  28. 28.

    Kikuchi S, Kanehashi S, Ogino K (2018) Transition of phase-separated PBTPA/PMMA solution droplets from core–shell to Janus morphology under UV light irradiation. Polym J 50:1089–1092

    CAS  Article  Google Scholar 

  29. 29.

    Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Google Scholar 

  30. 30.

    Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13(8):1741–1747

    CAS  Article  Google Scholar 

  31. 31.

    Kaelble DH, Uy KC (1970) A reinterpretation of organic liquid-polytetrafluoroethylene surface interactions. J Adhes 2(1):50–60

    CAS  Article  Google Scholar 

  32. 32.

    Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem 56(12):40–52

    CAS  Article  Google Scholar 

  33. 33.

    Klinger D, Wang CX, Connal LA, Audus DJ, Jang SG, Kraemer S, Killops KL, Fredrickson GH, Kramer EJ, Hawker CJ (2014) A facile synthesis of dynamic, shape-changing polymer particles. Angew Chem Int Ed 53(27):7018–7022

    CAS  Article  Google Scholar 

  34. 34.

    Mansky P, Liu Y, Huang E, Russell TP, Hawker C (1997) Controlling polymer-surface interactions with random copolymer brushes. Science 275(5305):1458–1460

    CAS  Article  Google Scholar 

  35. 35.

    Ryu DY, Ham S, Kim E, Jeong U, Hawker CJ, Russell TP (2009) Cylindrical microdomain orientation of PS-b-PMMA on the balanced interfacial interactions: composition effect of block copolymers. Macromolecules 42(13):4902–4906

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shinji Kanehashi or Kenji Ogino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 201 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, S., Shoji, R., Yoshida, S. et al. Fabrication of inverse core–shell and Janus-structured microspheres of blends of poly(4-butyltriphenylamine) and poly(methyl methacrylate). Colloid Polym Sci 298, 251–261 (2020). https://doi.org/10.1007/s00396-020-04604-9

Download citation

Keywords

  • Core–shell
  • Janus
  • Phase separation
  • Polymer blend
  • Polymer particle
  • Triphenylamine