Skip to main content
Log in

Pore connectivity effects on the internal surface electric charge of mesoporous silica

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nano-scale confinements within mesoporous systems develop overlapping electric double layers (EDL) such that the existing theoretical models cannot predict the electric potential distributions and resulting surface charges. In addition, ionic conditions undergo local variation through connections between the pore voids and pore throats. For the first time in literature, we studied the charging behavior of mesoporous silica in terms of the pore to throat size ratio (Rpt) to characterize the pore connectivity effects, in addition to porosity (є) and pore size (H). Both local and average surface charge densities inside mesoporous silica were examined by varying these parameters systematically. Results showed that the magnitude of surface charge density decreased with increasing EDL overlap and decreasing connectivity effects. We formulized this behavior and developed an extended model to predict mesoporous silica’s internal charge as a function of porosity, pore size, and pore to throat size ratio.

The table of contents entry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EDL:

Electric double layer

BD:

Boltzmann distribution

PNP:

Poisson-Nernst-Planck

CR:

Charge regulation

REV:

Representative elementary volume

H :

Pore size

R pt :

Pore to throat size ratio

c10 :

Bulk concentration of H+

c20 :

Bulk concentration of K+

c30 :

Bulk concentration of Cl

c40 :

Bulk concentration of OH

ε :

Porosity

λ :

Debye length

κ :

Debye-Hückel parameter

ε 0 :

Permitivity of vacuum

ε r :

Dielectric constant

k B :

Boltzmann constant

T :

Temperature

N A :

Avagadro constant

e:

Elementary charge

ci :

Local concentration of the ith ion

z i :

Valance of the ith ion

Ψ :

Electric potential

N i :

Flux density

D:

Diffusivity

F:

Faraday constant

R:

Universal gas constant

Γ:

Site density

KA, KB :

Equilibrium constants

σ:

Surface charge density

AR:

Aspect ratio of the solid parts

References

  1. Zheng H, Tai CW, Su J, Zou X, Gao F (2015) Ultra-small mesoporous silica nanoparticles as efficient carriers for pH responsive releases of anti-cancer drugs. Dalton Trans 44(46):20186–20192

    Article  CAS  PubMed  Google Scholar 

  2. Bharti C, Gulati N, Nagaich U, Pal AK (2015) Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig 5(3):124–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sancenon F et al (2015) Gated silica mesoporous materials in sensing applications. ChemistryOpen 4(4):418–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li L-L, Sun H, Fang CJ, Xu J, Jin JY, Yan CH (2007) Optical sensors based on functionalized mesoporous silica SBA-15 for the detection of multianalytes (H+ and Cu2+) in water. J Mater Chem 17(42):4492

    Article  CAS  Google Scholar 

  5. Kim HJ, Brunelli NA, Brown AJ, Jang KS, Kim WG, Rashidi F, Johnson JR, Koros WJ, Jones CW, Nair S (2014) Silylated mesoporous silica membranes on polymeric hollow fiber supports: synthesis and permeation properties. ACS Appl Mater Interfaces 6(20):17877–17886

    Article  CAS  PubMed  Google Scholar 

  6. Kim H.J., Lim J.E., Shul Y.G., Han H. 2004 Mesoporous silica: polymer composite membrane for direct methanol fuel cell, in Studies in Surface Science and Catalysis . p. 3036–3043

  7. Li W, Liu J, Zhao D (2016) Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 1(6)

  8. Diagboya PNE, Dikio ED (2018) Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment. Microporous Mesoporous Mater 266:252–267

    Article  CAS  Google Scholar 

  9. Castillo X, Pizarro J, Ortiz C, Cid H, Flores M, de Canck E, van der Voort P (2018) A cheap mesoporous silica from fly ash as an outstanding adsorbent for sulfate in water. Microporous Mesoporous Mater 272:184–192

    Article  CAS  Google Scholar 

  10. Jimbo T, Tanioka A, Minoura N (1998) Characterization of an amphoteric-charged layer grafted to the pore surface of a porous membrane. Langmuir 14(25):7112–7118

    Article  CAS  Google Scholar 

  11. Jimbo T, Higa M, Minoura N, Tanioka A (1998) Surface characterization of poly (acrylonitrile) membranes graft-polymerized with ionic monomers as revealed by ζ potential measurement. Macromolecules 31(4):1277–1284

    Article  CAS  Google Scholar 

  12. Peeters JMM, Mulder MHV, Strathmann H (1999) Streaming potential measurements as a characterization method for nanofiltration membranes. Colloids Surf A Physicochem Eng Asp 150(1–3):247–259

    Article  CAS  Google Scholar 

  13. Datta S, Conlisk AT, Kanani DM, Zydney AL, Fissell WH, Roy S (2010) Characterizing the surface charge of synthetic nanomembranes by the streaming potential method. J Colloid Interface Sci 348(1):85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Afonso M (2001) Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions. Sep Purif Technol 22-23(1–2):529–541

    Article  Google Scholar 

  15. Dimos K, Stathi P, Karakassides MA, Deligiannakis Y (2009) Synthesis and characterization of hybrid MCM-41 materials for heavy metal adsorption. Microporous Mesoporous Mater 126(1–2):65–71

    Article  CAS  Google Scholar 

  16. Dove PM, Craven CM (2005) Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions. Geochim Cosmochim Acta 69(21):4963–4970

    Article  CAS  Google Scholar 

  17. Salis A, Parsons DF, Boström M, Medda L, Barse B, Ninham BW, Monduzzi M (2010) Ion specific surface charge density of SBA-15 mesoporous silica. Langmuir 26(4):2484–2490

    Article  CAS  PubMed  Google Scholar 

  18. Martínez Casillas DC, Longinotti MP, Bruno MM, Vaca Chávez F, Acosta RH, Corti HR (2018) Diffusion of water and electrolytes in mesoporous silica with a wide range of pore sizes. J Phys Chem C 122(6):3638–3647

    Article  CAS  Google Scholar 

  19. Rho H, Chon K, Cho J (2018) Surface charge characterization of nanofiltration membranes by potentiometric titrations and electrophoresis: functionality vs. zeta potential. Desalination 427:19–26

    Article  CAS  Google Scholar 

  20. Goyne KW, Zimmerman AR, Newalkar BL, Komarneni S, Brantley SL, Chorover J (2002) Surface charge of variable porosity Al2O3(s) and SiO2(s) adsorbents. J Porous Mater 9(4):243–256

    Article  CAS  Google Scholar 

  21. Lan W-J, Holden DA, Liu J, White HS (2011) Pressure-driven nanoparticle transport across glass membranes containing a conical-shaped nanopore. J Phys Chem C 115(38):18445–18452

    Article  CAS  Google Scholar 

  22. Bowen WR, Hughes DT (1991) Properties of microfiltration membranes: the surface electrochemistry of anodic film membranes. J Colloid Interface Sci 143(1):252–265

    Article  CAS  Google Scholar 

  23. Huang K, Yang R (2007) Electrokinetic behaviour of overlapped electric double layers in nanofluidic channels. Nanotechnology 18:115701

    Article  CAS  Google Scholar 

  24. B. J. Kirby 2010 Micro-nanoscale fluid mechanics transport in microfluidic devices, Cornell University, New York

  25. Hung S.W., C.P. Chen, and C.C. Chieng 2008. Ionic transport in finite length nano-sized pores and channels. in ASME First International Conference on Micro/Nanoscale Heat Transfer. 2008. Tainan

  26. Lin CY, Yeh LH, Siwy ZS (2018) Voltage-induced modulation of ionic concentrations and ion current rectification in mesopores with highly charged pore walls. J Phys Chem Lett 9(2):393–398

    Article  CAS  PubMed  Google Scholar 

  27. Mao M, Ghosal S, Hu G (2013) Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage. Nanotechnology 24(24):245202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsu J-P, Lin SC, Lin CY, Tseng S (2017) Power generation by a pH-regulated conical nanopore through reverse electrodialysis. J Power Sources 366:169–177

    Article  CAS  Google Scholar 

  29. Lin JY, Lin CY, Hsu JP, Tseng S (2016) Ionic current rectification in a pH-tunable polyelectrolyte brushes functionalized conical nanopore: effect of salt gradient. Anal Chem 88(2):1176–1187

    Article  CAS  PubMed  Google Scholar 

  30. Ninham BW, Parsegian VA (1971) Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. J Theor Biol 31(3):405–428

    Article  CAS  PubMed  Google Scholar 

  31. Sen T, Barisik M (2018) Size dependent surface charge properties of silica nano-channels: double layer overlap and inlet/outlet effects. Phys Chem Chem Phys 20(24):16719–16728

    Article  CAS  PubMed  Google Scholar 

  32. Sen T, Barisik M (2019) Internal surface electric charge characterization of mesoporous silica. Sci Rep 9(1):137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Le Ravalec M et al (1996) Transport properties and microstructural characteristics of a thermally cracked mylonite. Pure Appl Geophys 146(2):207–227

    Article  Google Scholar 

  34. Nelson PH (2009) Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull 93(3):329–340

    Article  Google Scholar 

  35. Song Y-Q (2001) Pore sizes and pore connectivity in rocks using the effect of internal field. Magn Reson Imaging 19(3–4):417–421

    Article  CAS  PubMed  Google Scholar 

  36. Ioannidis MA, Chatzis I (1993) Network modelling of pore structure and transport properties of porous media. Chem Eng Sci 48(5):951–972

    Article  CAS  Google Scholar 

  37. Lindquist WB, Venkatarangan A, Dunsmuir J, Wong TF (2000) Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J Geophys Res Solid Earth 105(B9):21509–21527

    Article  Google Scholar 

  38. Barisik M, Atalay S, Beskok A, Qian S (2014) Size dependent surface charge properties of silica nanoparticles. J Phys Chem C 118(4):1836–1842

    Article  CAS  Google Scholar 

  39. Atalay S, Barisik M, Beskok A, Qian S (2014) Surface charge of a nanoparticle interacting with a flat substrate. J Phys Chem C 118(20):10927–10935

    Article  CAS  Google Scholar 

  40. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114(27):10834–10843

    Article  CAS  Google Scholar 

  41. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712

    Article  CAS  Google Scholar 

  42. Kleitz F, Choi SH, Ryoo R (2003) Cubic Ia 3 d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun 17:2136–2137

    Article  CAS  Google Scholar 

  43. Kleitz F., S. Hei Choi, and R. Ryoo 2003 Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes Electronic supplementary information (ESI) available: TEM images of mesoporous cubic silica and Pt networks, XRD patterns during formation of the cubic phase Chemical Communications, (17)

  44. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120(24):6024–6036

    Article  CAS  Google Scholar 

  45. Zhao D et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350):548–552

    Article  CAS  PubMed  Google Scholar 

  46. Yu C, Yu Y, Zhao D (2000) Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO–PBO–PEO copolymer. Chem Commun (7):575–576

  47. Kim T-W, Ryoo R, Kruk M, Gierszal KP, Jaroniec M, Kamiya S, Terasaki O (2004) Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time. J Phys Chem B 108(31):11480–11489

    Article  CAS  Google Scholar 

  48. Sakamoto Y, Kaneda M, Terasaki O, Zhao DY, Kim JM, Stucky G, Shin HJ, Ryoo R (2000) Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature 408(6811):449–453

    Article  CAS  PubMed  Google Scholar 

  49. dos Santos SML, Nogueira KAB, de Souza Gama M, Lima JDF, da Silva Júnior IJ, de Azevedo DCS (2013) Synthesis and characterization of ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of biomolecules. Microporous Mesoporous Mater 180:284–292

    Article  CAS  Google Scholar 

  50. Narayan R, Nayak U, Raichur A, Garg S (2018) Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics 10(3)

    Article  CAS  PubMed Central  Google Scholar 

  51. Knezevic N et al (2018) Hard template synthesis of nanomaterials based on mesoporous silica. Metall Mater Eng 24(4)

  52. Gobin O.C. 2006 SBA-16 materials synthesis, diffusion and sorption properties. , Laval University. p. 73

  53. Brakke KA (1992) The surface evolver. Exp Math 1(2):141–165

    Article  Google Scholar 

  54. Zhao H, Zhai S (2013) The influence of dielectric decrement on electrokinetics. J Fluid Mech 724:69–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wernersson E, Kjellander R (2006) On the effect of image charges and ion-wall dispersion forces on electric double layer interactions. J Chem Phys 125(15):154702

    Article  CAS  PubMed  Google Scholar 

  56. Yeh L-H, Xue S, Joo SW, Qian S, Hsu JP (2012) Field effect control of surface charge property and electroosmotic flow in nanofluidics. J Phys Chem C 116(6):4209–4216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under the Grant Number 118M710. Authors also would like to thank the Center for Scientific Computation at Southern Methodist University.

Funding

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under the Grant Number 118M710

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Barisik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, T., Barisik, M. Pore connectivity effects on the internal surface electric charge of mesoporous silica. Colloid Polym Sci 297, 1365–1373 (2019). https://doi.org/10.1007/s00396-019-04555-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04555-w

Keywords

Navigation