Skip to main content
Log in

Thermal phase transition of poly(N-vinyl caprolactam)-based copolymers: the distribution of hydrophilic units within polymeric chains

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Here, cloud temperature and aggregation behaviors of poly(N-vinyl caprolactam)-based polymer were investigated with the addition of hydrophilic units. Copolymers composed of N-vinyl caprolactam and polyethyleneglycol methylacrylate (POEGMA) were firstly synthesized through a reversible addition fragmentation chain transfer technology with benzylsulfanylthiocarbonylsulfanyl propionic acid (BPA) as chain transfer agent and 4,4′-azobis(4-cyanovaleric acid) as initiator. The cloud points measurements indicated that comparing with pure poly(N-vinyl caprolactam), little amount of POEGMA would dramatically decrease copolymers’ cloud temperature while further addition of POEGMA would inversely increase the cloud temperature. The contribution of POEGMA within polymeric chains was modulated by adding POEGMA after 30 min of initiating polymerization. Both the DLS and TEM measurements showed that micelles instead of random structures were formed through a self-assembling process above the cloud temperature. These results emphasized the importance of the contribution of hydrophilic units in predicting the thermal phase transition behavior of poly(N-vinyl caprolactam)-based materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cortez-Lemus NA, Licea-Claverie A (2016) Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym Sci 53:1–51

    Article  CAS  Google Scholar 

  2. Wang C, Wang X, Dong K, Luo J, Zhang Q, Cheng Y (2016) Injectable and responsively degradable hydrogel for personalized photothermal therapy. Biomaterials 104:129–137

    Article  CAS  Google Scholar 

  3. Whittaker JL, Subianto S, Dutta NK, Choudhury NR (2016) Induced insolubility of electrospun poly(N-vinylcaprolactam) fibres through hydrogen bonding with tannic acid. Polymer 87:194–201

    Article  CAS  Google Scholar 

  4. Wu QH, Tang XP, Liu X, Hou Y, Li H, Yang C, Yi J, Song XM, Zhang GL (2016) Thermo/pH dual responsive mixed-shell polymeric micelles based on the complementary multiple hydrogen bonds for drug delivery. Chem- Asian J 11:112–119

    Article  CAS  Google Scholar 

  5. Lee H, Hoshino Y, Wada Y, Arata Y, Maruyama A, Miura Y (2015) Minimization of synthetic polymer ligands for specific recognition and neutralization of a toxic peptide. J Am Chem Soc 137:10878–10881

    Article  CAS  Google Scholar 

  6. Agrawal G, Schuerings MP, van Rijn P, Pich A (2013) Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive process. J Mater Chem A 1:13244–13251

    Article  CAS  Google Scholar 

  7. Beija M, Marty JD, Destarac M (2011) Thermoresponsive poly(N-vinyl caprolactam)-coated gold nanoparticles: sharp reversible response and easy tunability. Chem Commun 47:2826–2828

    Article  CAS  Google Scholar 

  8. Liu J, Debuigne A, Detrembleur C, Jerome C (2014) Poly(N-vinylcaprolactam): a Thermoresponsive macromolecule with promising future in biomedical field. Adv Healthcare Mater 3:1941–1968

    Article  CAS  Google Scholar 

  9. Lutz JF, Akdemir O, Hoth A (2006) Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J Am Chem Soc 128:13046–13047

    Article  CAS  Google Scholar 

  10. Shao L, Hu M, Chen L, Xu L, Bi Y (2012) RAFT polymerization of N-vinylcaprolactam and effects of the end group on the thermal response of poly(N-vinylcaprolactam). React Funct Polym 72:407–413

    Article  CAS  Google Scholar 

  11. Burova TV, Grinberg NV, Grinberg VY, Kalinina EV, Lozinsky VI, Aseyev VO, Holappa S, Tenhu H, Khokhlov AR (2005) Unusual conformational behavior of complexes of poly(N-isopropylacrylamide) with poly(methacrylic acid). Macromolecules 38:1292–1299

    Article  CAS  Google Scholar 

  12. Medeiros SF, Oliveira PFM, Silva TM, Lara BR, Elaissari A, Santos AM (2015) Biocompatible and multi-responsive poly(N-vinylcaprolactam)-based microgels: the role of acidic comonomers in the colloidal properties and phase transition as a function of temperature and pH. Eur Polym J 73:191–201

    Article  CAS  Google Scholar 

  13. Maeda Y, Nakamura T, Ikeda I (2002) Hydration and phase behavior of poly(N-vinylcaprolactam) and poly(N-vinylpyrrolidone) in water. Macromolecules 35:217–222

    Article  CAS  Google Scholar 

  14. Kirsh YE, Krylov AV, Belova TA, Abdelsadek GG, Pashkin II (1996) Transformations of poly-N-vinylcasprolactam in aqueous-organic mixtures. Zhurnal Fizicheskoi Khimii 70:1403–1407

    CAS  Google Scholar 

  15. Makhaeva EE, Tenhu H, Khokhlov AR (1998) Conformational changes of poly(vinylcaprolactam) macromolecules and their complexes with ionic surfactants in aqueous solution. Macromolecules 31:6112–6118

    Article  CAS  Google Scholar 

  16. Xu YT, Cao Y, Xie JJ, Li Q, Chen XM, Kuo SW, Dai LZ (2016) Mixed micelles from synergistic self-assembly of hybrid copolymers with charge difference electrostatic interaction induced re-organization of micelles from hybrid copolymers. J Mater Res 31:2046–2057

    Article  CAS  Google Scholar 

  17. Xu WN, Ledin PA, Iatridi Z, Tsitsilianis C, Tsukruk VV (2016) Multicompartmental microcapsules with orthogonal programmable two-way sequencing of hydrophobic and hydrophilic cargo release. Angew Chem Int Ed 55:4908–490+

    Article  CAS  Google Scholar 

  18. Li GY, Qi MY, Yu NN, Liu XY (2015) Hybrid vesicles co-assembled from anionic graft copolymer and metal ions for controlled drug release. Chem Eng J 262:710–715

    Article  CAS  Google Scholar 

  19. Liu F, Kozlovskaya V, Medipelli S, Xue B, Ahmad F, Saeed M, Cropek D, Kharlampieva E (2015) Temperature-sensitive polymersomes for controlled delivery of anticancer drugs. Chem Mater 27:7945–7956

    Article  CAS  Google Scholar 

  20. Lou S, Gao S, Wang W, Zhang M, Zhang J, Wang C, Li C, Kong D, Zhao Q (2015) Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery. Nanoscale 7:3137–3146

    Article  CAS  Google Scholar 

  21. Sudhakar K, Rao KM, Subha MCS, Rao KC, Sadiku ER (2015) Temperature-responsive poly(N-vinylcaprolactam-co-hydroxyethyl methacrylate) nanogels for controlled release studies of curcumin. Des Monomers Polym 18:705–713

    Article  CAS  Google Scholar 

  22. Wang Y, Zheng J, Tian YF, Yang WL (2015) Acid degradable poly(vinylcaprolactam)-based nanogels with ketal linkages for drug delivery. J Mater Chem B 3:5824–5832

    Article  CAS  Google Scholar 

  23. Lou SF, Gao S, Wang WW, Zhang MM, Zhang QQ, Wang C, Li C, Kong DL (2014) Temperature/pH dual responsive microgels of crosslinked poly(N-vinylcaprolactam-co-undecenoic acid) as biocompatible materials for controlled release of doxorubicin. J Appl Polym Sci 131:7

    Article  Google Scholar 

  24. Loos W, Verbrugghe S, Goethals EJ, Du Prez FE, Bakeeva IV, Zubov VP (2003) Thermo-responsive organic/inorganic hybrid hydrogels based on poly(N-vinylcaprolactam). Macromol Chem Phys 204:98–103

    Article  CAS  Google Scholar 

  25. Ieong NS, Hasan M, Phillips DJ, Saaka Y, O’Reilly RK, Gibson MI (2012) Polymers with molecular weight dependent LCSTs are essential for cooperative behaviour. Polym Chem 3:794–799

    Article  CAS  Google Scholar 

  26. Liang X, Liu F, Kozlovskaya V, Palchak Z, Kharlampieva E (2015) Thermoresponsive micelles from double LCST-poly(3-methyl-N-vinylcaprolactam) block copolymers for cancer therapy. ACS Macro Lett 4:308–311

    Article  CAS  Google Scholar 

  27. Perrier S, Takolpuckdee P (2005) Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. J Polym Sci Part a-Polym Chem 43:5347–5393

    Article  CAS  Google Scholar 

  28. Jansen JFGA, Houben EEJE, Tummers PHG, Wienke D, Hoffmann J (2004) Real-time infrared determination of photoinitiated copolymerization reactivity ratios: application of the Hilbert transform and critical evaluation of data analysis techniques. Macromolecules 37:2275–2286

    Article  CAS  Google Scholar 

  29. Qiu XP, Sukhishvili SA (2006) Copolymerization of N-vinylcaprolactam and glycidyl methacrylate: reactivity ratio and composition control. J Polym Sci Part a-Polym Chem 44:183–191

    Article  CAS  Google Scholar 

  30. Shah S, Pal A, Gude R, Devi S (2010) Synthesis and characterization of thermo-responsive copolymeric nanoparticles of poly(methyl methacrylate-co-N-vinylcaprolactam). Eur Polym J 46:958–967

    Article  CAS  Google Scholar 

  31. Federico Jasso-Gastinel C, Arnez-Prado AH, Jose Aranda-Garcia F, Octavio Sahagun-Aguilar L, Lopez-Dellamary Toral FA, Elena Hernandez-Hernandez M, Javier Gonzalez-Ortiz L (2017) Tailoring copolymer properties by gradual changes in the distribution of the chains composition using semicontinuous emulsion polymerization. Polymers 9

  32. Zhang C, Xu T, Bao Z, Fu Z, Chen L (2017) Synthesis and characterization of polyacrylate latex containing fluorine and silicon via semi-continuous seeded emulsion polymerization. J Adhes Sci Technol 31:1658–1670

    Article  CAS  Google Scholar 

  33. Wei D, Zhang Y, Fu J (2017) Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile-poly(methyl methacrylate) core-shell composite nanoparticles. Beilstein J Nanotechnol 8:1897–1908

    Article  CAS  Google Scholar 

  34. Vancoillie G, Frank D, Hoogenboom R (2014) Thermoresponsive poly(oligo ethylene glycol acrylates). Prog Polym Sci 39:1074–1095

    Article  CAS  Google Scholar 

  35. Boyer C, Whittaker MR, Luzon M, Davis TP (2009) Design and synthesis of dual thermoresponsive and antifouling hybrid polymer/gold nanoparticles. Macromolecules 42:6917–6926

    Article  CAS  Google Scholar 

  36. Zhang YJ, Furyk S, Bergbreiter DE, Cremer PS (2005) Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J Am Chem Soc 127:14505–14510

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for the Excellent Academic Leaders Foundation of Harbin, China (No. 2014RFXXJ017), and the Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. QA201610-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyan Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Tang, D., Lv, H. et al. Thermal phase transition of poly(N-vinyl caprolactam)-based copolymers: the distribution of hydrophilic units within polymeric chains. Colloid Polym Sci 297, 1255–1264 (2019). https://doi.org/10.1007/s00396-019-04537-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04537-y

Keywords

Navigation