Skip to main content
Log in

Size, orientation, and strength of Na-montmorillonite flocs flowing in a laminar shear flow

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The flowing behavior of montmorillonite flocs coagulated in NaCl solution was visualized using a device called Couette chamber which was designed to analyze the strength of floc against breakup in a laminar shear flow generated in the gap between two concentric cylinders. The rotation ax of cylinders was oriented horizontally to avoid the effect of sedimentation during measurement. Observation of the morphology of flowing flocs was performed with a high-speed camera under sufficiently high salt concentration to induce rapid coagulation of montmorillonite as a function of shear rate. The recorded image of flocs demonstrated that the average flowing flocs is approximated by an ellipsoid of equivalent inertial moment with a length ratio of two principal axes being around 2. The most probable orientation of the major axis was found to be the flow direction. Assuming flocs are ellipsoids and will be disrupted by the effect of extensional component of the flow field, the cohesive strength supporting the disintegrating clusters was calculated on the basis of the simple model of floc strength proposed previously for the breakup of a floc under turbulent flow. The tendency of structural enforcement by the rearrangement of internal clusters was recorded with an increase in size of floc irrespective of ionic strength. In addition, the enforcement of cohesive strength by the effect of dehydration of proximately adsorbed sodium ions at extremely high ionic strength was confirmed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tambo N, Watanabe Y (1979) Physical characteristics of flocs—I. The floc density function and aluminium floc. Water Res 13(5):409–419. https://doi.org/10.1016/0043-1354(79)90033-2

    Article  CAS  Google Scholar 

  2. Parker DS, Kaufman WJ, Jenkins D (1972) Floc breakup in turbulent flocculation processes. J Sanit Eng Div Proc Am Soc Civ Eng SA1:79–99

    Google Scholar 

  3. Jarvis P, Jefferson B, Gregory J, Parsons SA (2005) A review of floc strength and breakage. Water Res 39:3121–3137. https://doi.org/10.1016/j.watres.2005.05.022

    Article  CAS  PubMed  Google Scholar 

  4. Johan C. Winterwerp Walther G. M. van Kesteren (2004) Introduction to the physics of cohesive sediment dynamics in the marine environment (Developments in Sedimentology Book 56) Elsevier

  5. Maggi F, Mietta F, Winterwerp JC (2007) Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment. J Hydrol 343(1–2):43–55. https://doi.org/10.1016/j.jhydrol.2007.05.035

    Article  Google Scholar 

  6. Adachi Y, Ooi S (1990) Geometrical structure of a floc. Colloids Interface Sci 135:374–384. https://doi.org/10.1016/0021-9797(90)90007-B

    Article  CAS  Google Scholar 

  7. Thomas DN, Judd SJ, Fawcett N (1999) Flocculation modeling: a review. Water Res 33(7):1579–1592. https://doi.org/10.1016/S0043-1354(98)00392-3

    Article  CAS  Google Scholar 

  8. Tambo N, Hozumi H (1979) Physical characteristics of flocs-II. Strength of floc. Water Res 13(5):421–427. https://doi.org/10.1016/0043-1354(79)90034-4

    Article  CAS  Google Scholar 

  9. Kobayashi M, Adachi Y, Ooi S (1999) Breakup of fractal flocs in a turbulent flow. Langmuir 15:4351–4356. https://doi.org/10.1021/la980763o

    Article  CAS  Google Scholar 

  10. Ehrl L, Soos M, Morbidelli M (2008) Dependence of aggregate strength, structure, and light scattering properties on primary particles size under turbulent conditions in stirred tank. Langmuir 24:3070–3081. https://doi.org/10.1021/la7032302

    Article  CAS  PubMed  Google Scholar 

  11. Soos M, Moussa AS, Ehrl L, Sefcik J, Wu H, Morbidelli M (2008) Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank. J Colloid Interface Sci 319(2):577–589. https://doi.org/10.1016/j.jcis.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  12. Miyahara K, Adachi Y, Nakaishi K, Ohtsubo M (2002) Settling velocity of a sodium montmorillonite floc under high ionic strength. Colloids Surf A Physicochem Eng Asp 196(1):87–91. https://doi.org/10.1016/S0927-7757(01)00798-1

    Article  CAS  Google Scholar 

  13. Miyahara K, Adachi Y, Nakaishi K (1996) The viscosity of a dilute suspension of sodium montmorillonite in an alkaline state. Colloids Surf:A69–A75. https://doi.org/10.1016/S0927-7757(96)03961-1

  14. Watanabe Y (2017) Flocculation and me. Water Res 114:88–103. https://doi.org/10.1016/j.watres.2016.12.035

    Article  CAS  PubMed  Google Scholar 

  15. Kao SV, Mason SG (1975) Dispersion of particles by shear. Nature 253:619–621

    Article  CAS  Google Scholar 

  16. Sonntag RC, Russel WB (1978) Structure and breakup of flocs subjected to fluid stresses: I. Shear experiments. J Colloid Interface Sci 113:399–413. https://doi.org/10.1016/0021-9797(86)90175-X

    Article  Google Scholar 

  17. Sonntag RC, Russel WB (1987) Structure and breakup of flocs subjected to fluid stresses: II Theory. J Colloid Interface Sci 115(2):378–389. https://doi.org/10.1016/0021-9797(87)90053-1

    Article  CAS  Google Scholar 

  18. Sonntag RC, Russel WB (1978) Structure and breakup of flocs subjected to fluid stresses. III. Converging flow. J Colloid Interface Sci 115:390–395. https://doi.org/10.1016/0021-9797(87)90054-3

    Article  Google Scholar 

  19. Derjaguin BV, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim U R S S 14:633–662. https://doi.org/10.1016/0079-6816(93)90013-L

    Article  Google Scholar 

  20. Verwery EJW, Overbeek JTG (1947) Theory of the stability of lyophobic colloids. J Phys Chem 51(3):631–636. https://doi.org/10.1021/j150453a001

    Article  Google Scholar 

  21. Higashitani K, Inada N, Ochi T (1991) Floc breakup along centerline of contractile flow to orifice. Colloids Surf A Physicochem Eng Asp 56:13–23. https://doi.org/10.1016/0166-6622(91)80111-Z

    Article  CAS  Google Scholar 

  22. Yeung AKC, Pelton R (1996) Micromechanics: a new approach to studying the strength and breakup of flocs. J Colloid Interface Sci 184(2):579–585. https://doi.org/10.1006/jcis.1996.0654

    Article  CAS  PubMed  Google Scholar 

  23. Doi M, Chen D (1989) Simulationof aggregating colloids in shear flow. J Chem Phys 90:5271–5279. https://doi.org/10.1063/1.456430

    Article  CAS  Google Scholar 

  24. Higashitani K, Iimura K, Sanda H (2001) Simulation of deformation and breakup of large aggregates in flows of viscous fluids. Chem Eng Sci 56(9):2927–2938. https://doi.org/10.1016/S0009-2509(00)00477-2

    Article  CAS  Google Scholar 

  25. Blaser S (2000) Flocs in shear and strain flows. J Colloid Interface Sci 225(2):273–284. https://doi.org/10.1006/jcis.1999.6671

    Article  CAS  PubMed  Google Scholar 

  26. Blaser S (2002) Forces on the surface of small ellipsoidal particles immersed in a linear flow field. Chem Eng Sci 57(3):515–526. https://doi.org/10.1016/S0009-2509(01)00389-X

    Article  CAS  Google Scholar 

  27. Kobayashi M (2004) Breakup and strength of polystyrene latex, flocs subjected to a converging flow. Colloids Surf A Physicochem Eng Asp 235(1–3):73–78. https://doi.org/10.1016/j.colsurfa.2004.01.008

    Article  CAS  Google Scholar 

  28. Kobayashi M (2005) Strength of natural soil flocs. Water Res 39(14):3273–3278. https://doi.org/10.1016/j.watres.2005.05.037

    Article  CAS  PubMed  Google Scholar 

  29. Frappier G, Lartiges BS, Skali-Lami S (2010) Floc cohesive force in reversible aggregation: a Couette laminar flow investigation. Langmuir 26(13):10475–10488. https://doi.org/10.1021/la9046947

    Article  CAS  PubMed  Google Scholar 

  30. Zhu Z, Wang H, Yu J, Dou J, Wang C (2015) Fractal dimensions of cohesive sediment flocs at steady state under seven shear flow conditions. Water 7(8):4385–4408. https://doi.org/10.3390/w7084385

    Article  CAS  Google Scholar 

  31. Zhu Z, Peng D, Dou J (2017) Changes in the two-dimensional and perimeter-based fractal dimensions of kaolinite flocs during flocculation: a simple experimental study. Water Sci Technol 77(4):861–870. https://doi.org/10.2166/wst.2017.603

    Article  CAS  Google Scholar 

  32. Léa G, Christ F, Alain L, Carole C-S (2019) Fractal dimensions and morphological characteristics of aggregates formed indifferent physico-chemical and mechanical flocculation environments. Colloids Surf A 560(5):213–222. https://doi.org/10.1016/j.colsurfa.2018.10.017

    Article  CAS  Google Scholar 

  33. Bubakova P, Pivokonsky M, Filip P (2013) Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state. Powder Technol 235:540–549. https://doi.org/10.1016/j.powtec.2012.11.014

    Article  CAS  Google Scholar 

  34. Guérin L, Coufort-Saudejaud C, Liné A, Christ F (2017) Dynamics of aggregate size and shape properties under sequenced flocculation in a turbulent Taylor-Couette reactor. J Colloid Interface Sci 491(1):167–178. https://doi.org/10.1016/j.jcis.2016.12.042

    Article  CAS  PubMed  Google Scholar 

  35. Sutherland DN, Goodarznia I (1971) Floc simulation: effect of collision sequence. Chem Eng Sci 26(12):2071–2085. https://doi.org/10.1016/0009-2509(71)80045-3

    Article  CAS  Google Scholar 

  36. Hyunseop L, Chongyoup K (2018) Experimental study on reversible formation of 2D flocs from plate-like particles dispersed in Newtonian fluid under torsional flow. Colloids Surf A 548(5):70–84. https://doi.org/10.1016/j.colsurfa.2018.03.043

    Article  CAS  Google Scholar 

  37. Spicer PT, Pratsinis SE (1996) Coagulation and fragmentation: universal steady state particle size distribution. AICHE J 42(6):1616–1620. https://doi.org/10.1002/aic.690420612

    Article  Google Scholar 

  38. Biggs C, Lant P (2000) Activated sludge flocculation: on-line determination of floc size and the effect of shear. Water Res 34:2542–2550. https://doi.org/10.1016/S0043-1354(99)00431-5

    Article  CAS  Google Scholar 

  39. Miyahara K, Ooi S, Nakaishi K, Kobayashi M, Adachi Y (2004) Capillary diameter effects on the apparent viscosity of the suspension of clay flocs. Nihon Reoroji Gakkaishi 32:277–284

    Article  CAS  Google Scholar 

  40. Meakin P, Jullien R (1988) The effects of restructuring on the geometry of clusters formed by diffusion-limited, ballistic, and reaction-limited cluster-cluster aggregation. J Chem Phys 89(1):246–250. https://doi.org/10.1063/1.455517

    Article  CAS  Google Scholar 

  41. Adachi Y, Kobayashi M, Ooi S (1998) Applicability of fractals to the analysis of the projection of small flocs. J Colloid Interface Sci 208:353–355. https://doi.org/10.1006/jcis.1998.5839

    Article  CAS  PubMed  Google Scholar 

  42. Boström M, Williams DRM, Ninham BW (2001) Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys Rev Lett 87(16):168103-(1-4). https://doi.org/10.1103/PhysRevLett.87.168103

    Article  CAS  Google Scholar 

  43. Pashley RM (1981) DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: a correlation of double-layer and hydration forces with surface cation exchange properties. J Colloid Interface Sci 83(2):531–546. https://doi.org/10.1016/0021-9797(81)90348-9

    Article  CAS  Google Scholar 

  44. Higashitani K, Nakamura K, Shimamura T, Fukasawa T, Tsuchiya K, Mori Y (2017) Orders of magnitude reduction of rapid coagulation rate with decreasing size of silica nanoparticles. Langmuir 33:5046–5051. https://doi.org/10.1021/acs.langmuir.7b00932

    Article  CAS  PubMed  Google Scholar 

  45. Kobayashi M, Juillerat F, Galletto P, Bowen P, Borkovec M (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21:5761–5769. https://doi.org/10.1021/la046829z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Research Facility Center for Science and Technology of the University of Tsukuba for manufacturing the Couette chamber.

Funding

This research was supported by JSPS Kakenhi 16H06382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhisa Adachi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adachi, Y., Di, C., Xiao, F. et al. Size, orientation, and strength of Na-montmorillonite flocs flowing in a laminar shear flow. Colloid Polym Sci 297, 979–987 (2019). https://doi.org/10.1007/s00396-019-04532-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04532-3

Keywords

Navigation