Skip to main content
Log in

PVDF based nanocomposites produced by solution blow spinning, structure and morphology induced by the presence of MWCNT and their consequences on some properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nanocomposites based on poly(vinylidene fluoride), PVDF, filled with multiwalled carbon nanotubes, MWCNT, were prepared by solution blow spinning, SBS. PVDF was modified with MWCNT with the aim of changing final properties inducing structural and morphological variations in the polymer by the simple presence of conductive particles. Different compositions were considered (0%, 1%, 2%, 3%, and 5% by weight of MWCNT) to understand the influence of the presence of MWCNT on the polymer structure, morphology, and consequently other properties. Morphology was inspected by optical and electron (SEM and TEM) microscopies, while structure was studied by Fourier transformed infrared spectroscopy, FTIR. Thermal behavior was monitored by differential scanning calorimetry, DSC, while the surface and electrical properties were studied by contact angle and capacitance measurements, respectively. SBS allowed obtaining mats of nanocomposites constituted by submicrometric fibers where the MWCNT are uniformly dispersed and well aligned along the PVDF fibers. In this study, several aspects about structure and thermal behavior of PVDF were clarified in relation to other researches carried out up to the moment. Although MWCNT concentration did not seem to affect much the fibrous morphology of the SBS materials, the PVDF crystalline structure and surface properties of the materials were slightly modified. Dielectric behavior of PVDF was highly affected by the presence of MWCNT leading to a particular change in the permittivity and being possible to obtain a value of 0.023 for the percolation fraction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dang ZM, Shen Y, Nan CW (2003) Dielectric behavior of three-phase percolative Ni-BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett 81:4814–4816. https://doi.org/10.1063/1.1529085

    Article  CAS  Google Scholar 

  2. Dang ZM, Fan LZ, Shen Y, Nan CW (2003) Study on dielectric behavior of a three-phase CF(PVDF + BaTiO3) composite. Chem Phys Lett 369:95–100. https://doi.org/10.1016/S0009-2614(02)01992-9

    Article  CAS  Google Scholar 

  3. Yao S-H, Dang Z-M, Jiang M-J, Bai J (2008) BaTiO[sub 3]-carbon nanotube/polyvinylidene fluoride three-phase composites with high dielectric constant and low dielectric loss. Appl Phys Lett 93:182905. https://doi.org/10.1063/1.3013833

    Article  CAS  Google Scholar 

  4. Dang ZM, Yuan JK, Zha JW et al (2012) Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 57:660–723

    Article  CAS  Google Scholar 

  5. Choi HW, Heo YW, Lee JH et al (2006) Effects of BaTiO3 on dielectric behavior of BaTiO 3-Ni-polymethyl methacrylate composites. Appl Phys Lett 89. https://doi.org/10.1063/1.2354425

  6. Zhou Y, Bai Y, Yu K et al (2013) Excellent thermal conductivity and dielectric properties of polyimide composites filled with silica coated self-passivated aluminum fibers and nanoparticles. Appl Phys Lett 102:252903. https://doi.org/10.1063/1.4812653

    Article  CAS  Google Scholar 

  7. Da Silva AB, Arjmand M, Sundararaj U, Bretas RES (2014) Novel composites of copper nanowire/PVDF with superior dielectric properties. Polym (United Kingdom) 55:226–234. https://doi.org/10.1016/j.polymer.2013.11.045

    Article  CAS  Google Scholar 

  8. Lau KT, Hui D (2002) The revolutionary creation of new advanced materials—carbon nanotube composites. Compos Part B Eng 33:263–277. https://doi.org/10.1016/S1359-8368(02)00012-4

    Article  Google Scholar 

  9. Sanchez FA, González-Benito J (2017) PVDFBaTiO 3 /carbon nanotubes ternary nanocomposites: Effect of nanofillers and processing. Polym Compos 38:227–235. https://doi.org/10.1002/pc.23579

    Article  CAS  Google Scholar 

  10. Lee JS, Kim GH, Kim WN et al (2008) Crystal structure and ferroelectric properties of poly(vinylidene fluoride)-carbon nano tube nanocomposite film. Mol Cryst Liq Cryst 491:247–254. https://doi.org/10.1080/15421400802330861

    Article  CAS  Google Scholar 

  11. Yan J, Liu M, Jeong YG et al (2018) Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy 56:662–692. https://doi.org/10.1016/j.nanoen.2018.12.010

    Article  CAS  Google Scholar 

  12. Chen QX, P a P (1995) Industrial applications of piezoelectric polymer transducers. Meas Sci Technol 6:249–267. https://doi.org/10.1088/0957-0233/6/3/001

    Article  CAS  Google Scholar 

  13. Gregorio R, Capitão RC (2000) Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride). J Mater Sci 35:299–306. https://doi.org/10.1023/A:1004737000016

    Article  CAS  Google Scholar 

  14. Gregorio R, Borges DS (2008) Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer (Guildf) 49:4009–4016. https://doi.org/10.1016/j.polymer.2008.07.010

    Article  CAS  Google Scholar 

  15. Olmos D, Montero F, González-Gaitano G, González-Benito J (2013) Structure and morphology of composites based on polyvinylidene fluoride filled with BaTiO 3 submicrometer particles: Effect of processing and filler content. Polym Compos 34:2094–2104. https://doi.org/10.1002/pc.22618

    Article  CAS  Google Scholar 

  16. Nunes JS, Wu A, Gomes J et al (2009) Relationship between the microstructure and the microscopic piezoelectric response of the alpha- and beta-phases of poly(vinylidene fluoride). Appl Phys a-Materials Sci Process 95:875–880. https://doi.org/10.1007/s00339-009-5089-2

    Article  CAS  Google Scholar 

  17. Gomes J, Serrado Nunes J, Sencadas V, Lanceros-Mendez S (2010) Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct 19:065010. https://doi.org/10.1088/0964-1726/19/6/065010

    Article  CAS  Google Scholar 

  18. Yue XU, Wei-tao Z, Wen-xue YU et al (2009) Crystallization behavior and mechanical properties of poly(vinylidene fluoride)/multi-walled carbon nanotube nanocomposites. Chem Res Chinese Univ 26:491–495

    Google Scholar 

  19. Tang XG, Hou M, Zou J et al (2012) Toughening and reinforcement of poly(vinylidene fluoride) nanocomposites with “ bud-branched” nanotubes. Compos Sci Technol 72:263–268. https://doi.org/10.1016/j.compscitech.2011.11.011

    Article  CAS  Google Scholar 

  20. Hong SM, Hwang SS (2008) Physical properties of thin PVDF/MWNT (multi-walled carbon nanotube) composite films by Melt Blending. J Nanosci Nanotechnol 8:4860–4863. https://doi.org/10.1166/jnn.2008.IC49

    Article  CAS  PubMed  Google Scholar 

  21. Sencadas V, Gregorio R, Lanceros-Mendez S (2009) α to β Phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci Part B 48:514–525. https://doi.org/10.1080/00222340902837527

    Article  CAS  Google Scholar 

  22. Mohammadi B, Yousefi AA, Bellah SM (2007) Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym Test 26:42–50. https://doi.org/10.1016/j.polymertesting.2006.08.003

    Article  CAS  Google Scholar 

  23. Lee SH, Cho HH (2010) Crystal structure and thermal properties of poly(vinylidene fluoride)-carbon fiber composite films with various drawing temperatures and speeds. Fibers Polym 11:1146–1151. https://doi.org/10.1007/s12221-010-1146-x

    Article  CAS  Google Scholar 

  24. Olmos D, Domínguez C, Castrillo PD, Gonzalez-Benito J (2009) Crystallization and final morphology of HDPE: effect of the high energy ball milling and the presence of TiO2 nanoparticles. Polymer (Guildf) 50:1732–1742. https://doi.org/10.1016/j.polymer.2009.02.011

    Article  CAS  Google Scholar 

  25. Sánchez F A., Redondo M, González-Benito J (2015) Influence of BaTiO\n3\n submicrometric particles on the structure, morphology, and crystallization behavior of poly(vinylidene fluoride). J Appl Polym Sci 132:n/a-n/a. https://doi.org/10.1002/app.41497

  26. Chen E-C, Wu T-M (2007) Isothermal crystallization kinetics and thermal behavior of poly(ɛ-caprolactone)/multi-walled carbon nanotube composites. Polym Degrad Stab 92:1009–1015. https://doi.org/10.1016/j.polymdegradstab.2007.02.019

    Article  CAS  Google Scholar 

  27. Feng J, Sui J, Cai W et al (2008) Preparation and characterization of magnetic multi-walled carbon nanotubes-poly(l-lactide) composite. Mater Sci Eng B Solid-State Mater Adv Technol 150:208–212. https://doi.org/10.1016/j.mseb.2008.05.017

    Article  CAS  Google Scholar 

  28. He L, Xu Q, Chengwu Hua RS (2010) Effect of multi-walled carbon nanotubes on crystallization, thermal, and mechanical properties of Poly vinylidene fluoride. Polym Compos 16:921–927. https://doi.org/10.1002/pc.20876

  29. He L, Sun J, Zheng X, Qun Xu RS (2010) Effect of multiwalled carbon nanotubes on crystallization behavior of poly(vinylidene fluoride) in different solvents. Polym Polym Compos 21:449–456. https://doi.org/10.1002/app

    Article  Google Scholar 

  30. He L, Zheng X, Xu Q (2010) Modification of carbon nanotubes using poly(vinylidene fluoride) with assistance of supercritical carbon dioxide: the impact of solvent. J Phys Chem B 114:5257–5262. https://doi.org/10.1021/jp911621y

    Article  CAS  PubMed  Google Scholar 

  31. Doshi J, Reneker DH (1993) Electrospinning process and applications of electrospun fibers. Conf Rec 1993 IEEE Ind Appl Conf Twenty-Eighth IAS Annu Meet 35:151–160. https://doi.org/10.1109/IAS.1993.299067

    Article  Google Scholar 

  32. Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, LHCM (2009) Solution Blow Spinning: A New Method to Produce Micro- and Nanofibers from Polymer Solutions. J Appl Polym Sci 113:2322–2330. https://doi.org/10.1002/app.30275

    Article  CAS  Google Scholar 

  33. González-Benito J, Teno J, González-Gaitano G et al (2017) PVDF/TiO2 nanocomposites prepared by solution blow spinning: surface properties and their relation with S. Mutans adhesion. Polym Test 58:21–30. https://doi.org/10.1016/j.polymertesting.2016.12.005

    Article  CAS  Google Scholar 

  34. Kedem S, Schmidt J, Paz Y, Cohen Y (2005) Composite polymer nanofibers with carbon nanotubes and titanium dioxide particles. Langmuir 21:5600–5604. https://doi.org/10.1021/la0502443

    Article  CAS  PubMed  Google Scholar 

  35. Huang S, Aik Yee W, Chauhari Tiju W et al (2008) Electrospinning of PVDF with CNT : synergistic effects of extensional force and interfacial interaction on crystalline structure. Langmuir 24:13621–13626

    Article  CAS  PubMed  Google Scholar 

  36. Wu C-M, Chou M-H, Zeng W-Y (2018) Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes. Nanomaterials 8:420. https://doi.org/10.3390/nano8060420

    Article  CAS  PubMed Central  Google Scholar 

  37. Abdal-Hay A, Hamdy AS, Abdellah MY, Lim J (2014) In vitro bioactivity of implantable Ti materials coated with PVAc membrane layer. Mater Lett 126:267–270. https://doi.org/10.1016/j.matlet.2014.04.048

    Article  CAS  Google Scholar 

  38. Abdal-Hay A, Vanegas P, Lim JK (2014) Air jet spray of nylon 6 membrane structures for bone tissue engineering. Mater Lett 125:51–55. https://doi.org/10.1016/j.matlet.2014.03.138

    Article  CAS  Google Scholar 

  39. Kuk E, Ha YM, Yu J et al (2016) Robust and flexible polyurethane composite nanofibers incorporating multi-walled carbon nanotubes produced by solution blow spinning. Macromol Mater Eng 301:364–370. https://doi.org/10.1002/mame.201500298

    Article  CAS  Google Scholar 

  40. Medeiros ES, Glenn GM, Klamczynski AP, et al (2014) Solution Blow Spinning. 1

  41. Rosenberg Y, Siegmann A, Narkis M, Shkolnik S (1991) The sol/gel contribution to the behavior of γ-irradiated poly(vinylidene fluoride). J Appl Polym Sci 43:535–541. https://doi.org/10.1002/app.1991.070430314

    Article  CAS  Google Scholar 

  42. Seoul C, Kim YT, Baek CK (2003) Electrospinning of poly(vinylidene fluoride)/dimethylformamide solutions with carbon nanotubes. J Polym Sci Part B Polym Phys 41:1572–1577. https://doi.org/10.1002/polb.10511

    Article  CAS  Google Scholar 

  43. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7:15382–15389. https://doi.org/10.1039/C7RA01267E

    Article  CAS  Google Scholar 

  44. González-Benito J, González-Gaitano G (2008) Interfacial conformations and molecular structure of PMMA in PMMA/silica nanocomposites. Effect of high-energy ball milling. Macromolecules 41:4777–4785. https://doi.org/10.1021/ma800260k

    Article  CAS  Google Scholar 

  45. Olmos D, Martín EV, González-Benito J (2014) New molecular-scale information on polystyrene dynamics in PS and PS–BaTiO3 composites from FTIR spectroscopy. Phys Chem Chem Phys 16:24339–24349. https://doi.org/10.1039/C4CP03516J

    Article  CAS  PubMed  Google Scholar 

  46. Priya L, Jog JP (2002) Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: Crystallization and dynamic mechanical behavior studies. J Polym Sci Part B Polym Phys 40:1682–1689. https://doi.org/10.1002/polb.10223

    Article  CAS  Google Scholar 

  47. Manna S, Nandi AK (2007) Piezoelectric β polymorph in poly(vinylidene fluoride)-functionalized multiwalled carbon nanotube nanocomposite films. J Phys Chem C 111:14670–14680. https://doi.org/10.1021/jp073102l

    Article  CAS  Google Scholar 

  48. Mandal A, Nandi AK (2011) Physical properties of poly(vinylidene fluoride) composites with polymer functionalized multiwalled carbon nanotubes using nitrene chemistry. J Mater Chem 21:15752. https://doi.org/10.1039/c1jm12926k

    Article  CAS  Google Scholar 

  49. Kar E, Bose N, Dutta B et al (2017) Poly(vinylidene fluoride)/submicron graphite platelet compositeA smart, lightweight flexible material with significantly enhanced β polymorphism, dielectric and microwave shielding properties. Eur Polym J 90:442–455. https://doi.org/10.1016/j.eurpolymj.2017.03.030

    Article  CAS  Google Scholar 

  50. Jia N, He Q, Sun J et al (2017) Crystallization behavior and electroactive properties of PVDF, P(VDF-TrFE) and their blend films. Polym Test 57:302–306. https://doi.org/10.1016/j.polymertesting.2016.12.003

    Article  CAS  Google Scholar 

  51. Tsonos C, Pandis C, Soin N et al (2015) Multifunctional nanocomposites of poly(vinylidene fluoride) reinforced by carbon nanotubes and magnetite nanoparticles. Express Polym Lett 9:1104–1118. https://doi.org/10.3144/expresspolymlett.2015.99

    Article  CAS  Google Scholar 

  52. Marega C, Marigo A (2003) Influence of annealing and chain defects on the melting behaviour of poly(vinylidene fluoride). Eur Polym J 39:1713–1720. https://doi.org/10.1016/S0014-3057(03)00062-4

    Article  CAS  Google Scholar 

  53. Chiu FC (2014) Comparisons of phase morphology and physical properties of PVDF nanocomposites filled with organoclay and/or multi-walled carbon nanotubes. Mater Chem Phys 143:681–692. https://doi.org/10.1016/j.matchemphys.2013.09.054

    Article  CAS  Google Scholar 

  54. Chiu FC, Chen YJ (2015) Evaluation of thermal, mechanical, and electrical properties of PVDF/GNP binary and PVDF/PMMA/GNP ternary nanocomposites. Compos Part A Appl Sci Manuf 68:62–71. https://doi.org/10.1016/j.compositesa.2014.09.019

    Article  CAS  Google Scholar 

  55. Ramasundaram S, Yoon S, Kim KJ, Park C (2008) Preferential formation of electroactive crystalline phases in poly(vinylidene fluoride)/organically modified silicate nanocomposites. J Polym Sci Part B Polym Phys 46:2173–2187. https://doi.org/10.1002/polb.21550

    Article  CAS  Google Scholar 

  56. Gregorio R, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci Part B Polym Phys 32:859–870. https://doi.org/10.1002/polb.1994.090320509

    Article  CAS  Google Scholar 

  57. Gregorio R (2006) Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J Appl Polym Sci 100:3272–3279. https://doi.org/10.1002/app.23137

    Article  CAS  Google Scholar 

  58. Ince-Gunduz BS, Alpern R, Amare D et al (2010) Impact of nanosilicates on poly(vinylidene fluoride) crystal polymorphism: Part 1. Melt-crystallization at high supercooling. Polymer (Guildf) 51:1485–1493. https://doi.org/10.1016/j.polymer.2010.01.011

    Article  CAS  Google Scholar 

  59. Biswas S, Dutta B, Bhattacharya S (2017) Isothermal crystallization kinetics as a probe of the preferential electroactive phase nucleation in silver-poly(vinylidene fluoride) nanocomposites: Dependence on nanoparticle size and concentration. Eur Polym J 86:1–16. https://doi.org/10.1016/j.eurpolymj.2016.11.013

    Article  CAS  Google Scholar 

  60. Li L, Zhang M, Ruan W (2015) Studies on synergistic effect of CNT and CB nanoparticles on PVDF. Polym Compos 36:2248–2254. https://doi.org/10.1002/pc.23137

    Article  CAS  Google Scholar 

  61. Wang L, Dang Z-M (2005) Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl Phys Lett 87:042903. https://doi.org/10.1063/1.1996842

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support received from the Ministerio de Economía y Competitividad [MAT2014-59116-C2]; the Universidad Carlos III de Madrid due to Fondos de Investigación de Fco. Javier González Benito [2012/00130/004], and the strategic Action in Composites materials and interphases [2011/00287/002]. TEM characterization was made at LABMET, associated to the Red de Laboratorios de la Comunidad de Madrid.

Funding

This study was funded by the Ministerio de Economía y Competitividad [MAT2014-59116-C2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier González-Benito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Benito, J., Torres, D., Ballesteros, C. et al. PVDF based nanocomposites produced by solution blow spinning, structure and morphology induced by the presence of MWCNT and their consequences on some properties. Colloid Polym Sci 297, 1105–1118 (2019). https://doi.org/10.1007/s00396-019-04530-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04530-5

Keywords

Navigation