Skip to main content
Log in

Stabilization of colloidal metallic nanoparticles using polymers and hexa-substituted compounds with 1,3,4-oxadiazole pendant groups

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Stabilization of metallic nanoparticles in colloidal solutions has been realized by different capping agents. Heterocyclic compounds can interact with metallic surfaces, and some authors have reported the use of heterocyclic compounds for the stabilization of colloidal nanoparticles. In this work, we report stabilization of Au and Ag nanoparticles using polymers and hexa-substituted compounds with 1,3,4-oxadiazole pendant groups. Using a polyelectrolyte with 2-amino-1,3,4-oxadiazole groups was possible to reduce Au3+ and Ag+ ions and stabilize Au and Ag nanoparticles in colloidal solution. With polymers and hexa-substituted compounds containing 1,3,4-oxadiazoles substituted with methyl, phenyl, or acetyl groups, stabilize Au and Ag nanoparticles in a water-DMF medium was possible. Characterization by TEM revealed the obtaining of Au and Ag nanoparticles with control over the size and the shape. The lowest average size for Au and Ag nanoparticles was 4 and 10 nm, respectively, using the hexa-substituted compound with 2-acetamido-4-acetyl-1H-1,3,4-oxadiazole groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Patel KD, Prajapati SM, Panchal SN, Patel HD (2014) Review of synthesis of 1,3,4-oxadiazole derivatives. Synth Commun 44:1859–1875. https://doi.org/10.1080/00397911.2013.879901

    Article  CAS  Google Scholar 

  2. Yang NC, Park YH, Suh DH (2003) Synthesis and properties of new ultraviolet–blue-emissive fluorene-based aromatic polyoxadiazoles with confinement moieties. J Polym Sci A 41:674–683. https://doi.org/10.1002/pola.10616

    Article  CAS  Google Scholar 

  3. Gomes D, Roeder J, Ponce ML, Nunes SP (2008) Single-step synthesis of sulfonated polyoxadiazoles and their use as proton conducting membranes. J Power Sources 175:49–59. https://doi.org/10.1016/j.jpowsour.2007.09.090

    Article  CAS  Google Scholar 

  4. Dong YB, Sun T, Ma JP, Zhao XX, Huang RQ (2006) Ag(I) and Cu(II) discrete and polymeric complexes based on single- and double-armed oxadiazole-bridging organic clips. Inorg Chem 45:10613–10628. https://doi.org/10.1021/ic0612552

    Article  CAS  PubMed  Google Scholar 

  5. Singh NK, Bharty MK, Dulare R, Butcher RJ (2009) Synthesis and X-ray crystallographic studies of Ni (II) and Cu (II) complexes of [5-(4-pyridyl)-1,3,4] oxadiazole-2-thione/thiol formed by transformation of N-(pyridine-4-carbonyl)-hydrazine carbodithioate in the presence of ethylenediamine. Polyhedron 28:2443–2449. https://doi.org/10.1016/j.poly.2009.04.030

    Article  CAS  Google Scholar 

  6. Chen L, Yang C, Li M, Qin J, Gao J, You H, Ma D (2007) Supramolecular architectures, photophysics, and electroluminescence of 1,3,4-oxadiazole-based iridium(III) complexes: from μ-dichloro bridged dimer to mononuclear complexes. Cryst Growth Des 7:39–46. https://doi.org/10.1021/cg060323s

    Article  CAS  Google Scholar 

  7. Zhang SZ, Zhang ZH, Li CP, Du M (2009) Novel HgII and MnII supramolecular complexes with a versatile building block 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiolate involving in situ ligand formation. Inorg Chem Commun 12:1038–1041. https://doi.org/10.1016/j.inoche.2009.08.015

    Article  CAS  Google Scholar 

  8. Zhang J, Zhou L, Al-Attar HA, Shao K, Wang L, Zhu D, Su Z, Bryce MR, Monkman AP (2013) Efficient light-emitting electrochemical cells (LECs) based on ionic iridium(III) complexes with 1,3,4-oxadiazole ligands. Adv Funct Mater 23:4667–4677. https://doi.org/10.1002/adfm.201300344

    Article  CAS  Google Scholar 

  9. Zheng Y, Batsanov AS, Bryce MR (2011) Unusual dinuclear and mononuclear cyclometalated iridium complexes of 2,5-diaryl-1,3,4-oxadiazole derivatives. Inorg Chem 50:3354–3362. https://doi.org/10.1021/ic102153x

    Article  CAS  PubMed  Google Scholar 

  10. Wu X, Liu Y, Wang Y, Wang L, Tan H, Zhu M, Zhu W, Cao Y (2012) Highly efficient near-infrared emission from binuclear cyclo-metalated platinum complexes bridged with 5-(4-octyloxyphenyl)-1,3,4-oxadiazole-2-thiol in PLEDs. Org Electron 13:932–937. https://doi.org/10.1016/j.orgel.2012.02.004

    Article  CAS  Google Scholar 

  11. Bharty MK, Dani RK, Nath P, Bharti A, Singh NK, Prakash O, Singh RK, Butcher RJ (2015) Syntheses, structural and thermal studies on Zn(II) complexes of 5-aryl-1,3,4-oxadiazole-2-thione and dithiocarbamates: antibacterial activity and DFT calculations. Polyhedron 98:84–95. https://doi.org/10.1016/j.poly.2015.05.045

    Article  CAS  Google Scholar 

  12. Bouklah M, Hammouti B, Lagrenee M, Bentiss F (2006) Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium. Corros Sci 48:2831–2842. https://doi.org/10.1016/j.corsci.2005.08.019

    Article  CAS  Google Scholar 

  13. Bentiss F, Traisnel M, Chaibi N, Mernari B, Vezin H, Lagrenée M (2002) 2,5-Bis(n-methoxyphenyl)-1,3,4-oxadiazoles used as corrosion inhibitors in acidic media: correlation between inhibition efficiency and chemical structure. Corros Sci 44:2271–2289. https://doi.org/10.1016/S0010-938X(02)00037-9

    Article  CAS  Google Scholar 

  14. Lagrenée M, Mernari B, Chaibi N, Traisnel M, Vezin H, Bentiss F (2001) Investigation of the inhibitive effect of substituted oxadiazoles on the corrosion of mild steel in HCl medium. Corros Sci 43:951–962. https://doi.org/10.1016/S0010-938X(00)00076-7

    Article  Google Scholar 

  15. Outirite M, Lagrenée M, Lebrini M, Traisnel M, Jama C, Vezin H, Bentiss F (2010) AC impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution. Electrochim Acta 55:1670–1681. https://doi.org/10.1016/j.electacta.2009.10.048

    Article  CAS  Google Scholar 

  16. Bentiss F, Lagrenée M, Traisnel M (2000) 2,5-Bis(n-Pyridyl)-1,3,4-oxadiazoles as corrosion inhibitors for mild steel in acidic media. Corrosion 56:733–742. https://doi.org/10.5006/1.3280577

    Article  CAS  Google Scholar 

  17. Mihai M, Damaceanu MD, Aflori M, Schwarz S (2012) Calcium carbonate microparticles growth templated by an oxadiazole-functionalized maleic anhydride-co-N-vinyl-pyrrolidone copolymer, with enhanced pH stability and variable loading capabilities. Crys Growth Des 12:4479–4486. https://doi.org/10.1021/cg301011c

    Article  CAS  Google Scholar 

  18. Chrissanthopoulos A, Tzanetos NP, Andreopoulou AK, Kallitsis J, Dalas E (2005) Calcite crystallization on oxadiazole-terpyridine copolymer. J Cryst Growth 280:594–601. https://doi.org/10.1016/j.jcrysgro.2005.02.074

    Article  CAS  Google Scholar 

  19. Damaceanu MD, Mihai M, Popescu I, Bruma M, Schwarz S (2012) Synthesis and characterization of a new oxadiazole-functionalized maleic anhydride-N-vinylpyrrolidone copolymer and its application in CaCO3 based microparticles. React Funct Polym 72:635–641. https://doi.org/10.1016/j.reactfunctpolym.2012.06.001

    Article  CAS  Google Scholar 

  20. Chen J, Javaheri H, Sulaiman BAC, Dahman (2016) Synthesis, characterization and applications of nanoparticles. In: Grumezescu AM (ed) Fabrication and self-assembly of nanobiomaterials1st edn. William Andrew Publishing, Ciudad Juárez, US, pp 1–27. https://doi.org/10.1016/B978-0-323-41533-0.00001-5

    Chapter  Google Scholar 

  21. Herizchi R, Abbasi E, Milani M, Akbarzadeh A (2016) Current methods for synthesis of gold nanoparticles. Artif Cells Nanomed Biotechnol 44(2):596–602. https://doi.org/10.3109/21691401.2014.971807

    Article  CAS  PubMed  Google Scholar 

  22. Caldera-Villalobos M, Herrera-González AM, García-Serrano J, Martins-Alho MA, Montalvo-Sierra MI (2016) Polyelectrolytes with tetrazole pendant groups useful in the stabilization of Au and Ag nanoparticles. J Appl Polym Sci 133(43773). https://doi.org/10.1002/app.43773

  23. Herrera-González AM, Caldera-Villalobos M, García-Serrano J, Peláez Cid AA (2016) Polyelectrolytes with sulfonic acid groups useful in the synthesis and stabilization of Au and Ag nanoparticles. Des Monomer Polym 19:330–339. https://doi.org/10.1080/15685551.2016.1152543

    Article  CAS  Google Scholar 

  24. Niu P, Kang J, Tian X, Song L, Liu H, Wu J, Yu W, Chang J (2014) Synthesis of 2-amino-1,3,4-oxadiazoles and 2-amino-1,3,4-thiadiazoles via sequential condensation and I2-mediated oxidative C–O/C–S bond formation. J Organomet Chem 80:1018–1024. https://doi.org/10.1021/jo502518c

    Article  CAS  Google Scholar 

  25. Herrera-González AM, García-Serrano J, Caldera-Villalobos M (2018) Synthesis and stabilization of Au nanoparticles in colloidal solution using macroelectrolytes with sulfonic acid groups. J Appl Polym Sci 135:46424. https://doi.org/10.1002/app.45888

    Article  CAS  Google Scholar 

  26. Herrera-González AM, Caldera-Villalobos M, Bocardo-Tovar PB, García-Serrano J (2018) Synthesis of gold colloids using polyelectrolytes and macroelectrolytes containing arsonic moieties. Colloid Polym Sci 296:961–969. https://doi.org/10.1007/s00396-018-4309-8

    Article  CAS  Google Scholar 

  27. Carriedo GA, Fernández-Catuxo L, García-Alonso FJ, Gómez-Elipe P, González PA, Sánchez G (1996) On the synthesis of functionalized cyclic and polymeric aryloxyphosphazenes from phenols. J Appl Polym Sci 59:1879–1885. https://doi.org/10.1002/(SICI)1097-4628(19960321)59:12<1879::AID-APP9>3.0.CO;2-N

    Article  CAS  Google Scholar 

  28. Ilgin P, Ozay O, Ozay H (2019) A novel hydrogel containing thioether group as selective support material for preparation of gold nanoparticles: synthesis and catalytic applications. Appl Catal B Environ 241:415–423 [1]

    Article  CAS  Google Scholar 

  29. Hu D, Shi Y, Du Y, Yu W, Huang J, Gao H, Zhu M (2018) Template synthesis of gold nanoparticles from hyperstar polymers and exploration of their catalytic function for hydrogen evolution reaction. Polymer 153:331–337. https://doi.org/10.1016/j.polymer.2018.08.030 [3]

  30. Anung P, Enny L, Dede K, Mujinah, Nur SU, Hardi GA, Sarah A, Abdul M (2018). pH effect of gold nanoparticles synthesis encapsulation in polyamide amine generation 3.0 (AuNP-PAMAM G3.0) Res J Chem Environ, 22: 214–219. [4]

  31. Pelin JN, Gatto E, Venanzi M, Cavalieri F, Oliveira CL, Martinho H, Silva ER, Aguilar AM, Souza JS Alves WA (2018) Hybrid conjugates formed between gold nanoparticles and an amyloidogenic diphenylalanine-cysteine peptide. ChemistrySelect 3(24):6756–6765 [5]

    Article  CAS  Google Scholar 

  32. Kabomo TM, Scurrell MS (2016) The effect of protonation and oxidation state of polyaniline on the stability of gold nanoparticles. Eur Polym J 82:300–306. https://doi.org/10.1016/j.eurpolymj.2016.04.004 [6]

  33. Zhai C, Liu X, Chen X, Li L, Sun F, Ma H (2015) Facile synthesis of intelligent polymers modified gold nanoparticles in aqueous solution. J Inorg Organomet Polym Mater 25(4):687–693. https://doi.org/10.1007/s10904-014-0146-5 [7]

  34. Dai Y, Li Y, Wang S (2015) ABC triblock copolymer-stabilized gold nanoparticles for catalytic reduction of 4-nitrophenol. J Catal 329:425–430. https://doi.org/10.1016/j.jcat.2015.06.006 [8]

    Article  CAS  Google Scholar 

  35. Liu X, Li L, Ye M, Xue Y, Chen S (2014) Polyaniline: poly (sodium 4-styrenesulfonate)-stabilized gold nanoparticles as efficient, versatile catalysts. Nanoscale 6(10):5223–5229. https://doi.org/10.1039/C4NR00328D [9]

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H, Li W, Gu Y, Zhang S (2014) Preparation and catalytic activity of poly (N-vinyl-2-pyrrolidone)-protected Au nanoparticles for the aerobic oxidation of glucose. J Nanosci Nanotechnol 14(8):5743–5751. https://doi.org/10.1166/jnn.2014.8839 [10]

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Mu S, Liu X, Ling Q, Hang C, Ruiz J, Astruc D, Gu H (2018) Ferrocenyl Janus mixed-dendron stars and their stabilization of Au and Ag nanoparticles. Tetrahedron 74(37):4777–4789 [2]

    Article  CAS  Google Scholar 

  38. Vu XH, Duong TTT, Pham TTH, Trinh DK, Nguyen XH, Dang VS (2018) Synthesis and study of silver nanoparticles for antibacterial activity against Escherichia coli and Staphylococcus aureus. Adv Nat Sci Nanosci Nanotechnol 9(2):025019. https://doi.org/10.1088/2043-6254/aac58f [11]

  39. Farooqi ZH, Khalid R, Begum R, Farooq U, Wu Q, Wu W, Ajmal M, Irfan A, Naseem K (2018) Facile synthesis of silver nanoparticles in a crosslinked polymeric system by in situ reduction method for catalytic reduction of 4-nitroaniline. Environ Technol:1–10. https://doi.org/10.1080/09593330.2018.1435737 [12]

  40. Fahmy A, Eisa WH, Yosef M, Hassan A (2016) Ultra-thin films of poly (acrylic acid)/silver nanocomposite coatings for antimicrobial applications. J Spectroscopy 1:11. https://doi.org/10.1155/2016/7489536 [13]

    Article  CAS  Google Scholar 

  41. Shkilnyy A, Soucé M, Dubois P, Warmont F, Saboungi ML, Chourpa I (2009) Poly (ethylene glycol)-stabilized silver nanoparticles for bioanalytical applications of SERS spectroscopy. Analyst 134(9):1868–1872. https://doi.org/10.1039/B905694G [14]

    Article  CAS  PubMed  Google Scholar 

  42. Wang H, Qiao X, Chen J, Ding S (2005) Preparation of silver nanoparticles by chemical reduction method. Colloids Surf A Physicochem Eng Asp 256(2–3):111–115. https://doi.org/10.1016/j.colsurfa.2004.12.058 [15]

    Article  CAS  Google Scholar 

  43. Bajpai, S. K., Chand, N., & Mahendra, M. (2013). In situ formation of silver nanoparticles in poly (methacrylic acid) hydrogel for antibacterial applications. Polym Eng Sci, 53(8), 1751–1759. https://doi.org/10.1002/pen.23424[16]

  44. De Oliveira CS, Lira BF, Barbosa-Filho JM, Lorenzo JGF, de Athayde-Filho PF (2012) Synthetic approaches and pharmacological activity of 1, 3, 4-oxadiazoles: a review of the literature from 2000–2012. Molecules 17(9):10192–10231. https://doi.org/10.3390/molecules170910192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gong X, Zhang H, Jiang N, Wang L, Wang G (2019) Oxadiazole-based ‘on-off’fluorescence chemosensor for rapid recognition and detection of Fe2+ and Fe3+ in aqueous solution and in living cells. Microchem J 145:435–443. https://doi.org/10.1016/j.microc.2018.11.011

    Article  CAS  Google Scholar 

  46. Lin L, Wang D, Chen SH, Wang DJ, Yin GD (2017) A highly sensitive fluorescent chemosensor for selective detection of zinc (II) ion based on the oxadiazole derivative. Spectrochim Acta A Mol Biomol Spectrosc 174:272–278. https://doi.org/10.1016/j.saa.2016.11.053

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Caldera-Villalobos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1733 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caldera-Villalobos, M., Martins-Alho, M., Herrera González, A.M. et al. Stabilization of colloidal metallic nanoparticles using polymers and hexa-substituted compounds with 1,3,4-oxadiazole pendant groups. Colloid Polym Sci 297, 933–946 (2019). https://doi.org/10.1007/s00396-019-04516-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04516-3

Keywords

Navigation