Advertisement

Colloid and Polymer Science

, Volume 297, Issue 5, pp 729–739 | Cite as

Adsorption of polyelectrolytes onto the oppositely charged surface of tubular J-aggregates of a cyanine dye

  • Omar Al-Khatib
  • Christoph Böttcher
  • Hans von Berlepsch
  • Katherine Herman
  • Sebastian Schön
  • Jürgen P. Rabe
  • Stefan KirsteinEmail author
Original Contribution
  • 212 Downloads

Abstract

The adsorption of three different polycations at the negatively charged surface of tubular J-aggregates of the amphiphilic cyanine dye 3,3′-bis(2-sulfopropyl)-5,5′,6,6′-tetrachloro-1,1′-dioctylbenzimidacarbocyanine (C8S3) is investigated by means of cryogenic electron microscopy and optical absorption spectroscopy. All three polycations could be adsorbed at the tubular aggregates without flocculation or precipitation when added in molar amounts of monomers sufficiently smaller than that of the dye molecules. It is found that preferably, a minority of aggregates is coated by the polycations while a majority of aggregates is left uncoated. For the coated aggregates, the adsorption leads to charge reversal of the aggregate surface as supported by zeta potential measurements. The morphology of the coating differs significantly for the three polycations: The branched polycation polyethylenimine (PEI) attaches to the tubular aggregate by hit-and-stick adsorption of the coiled state in solution forming irregular clot-like coatings; the flexible and weakly cationic poly (allylamine hydrochloride) (PAH) forms a more homogeneous coating but destroys the integrity of the dye aggregate; the more hydrophobic and strong polycation poly (diallyldimethylammonium chloride) (PDADMAC) forms a thin and homogeneous layer, supposedly by wrapping around the tubular aggregate. For the latter growth of a second double layer of dyes is observed for the aggregates. The different morphologies of the coating layers are explained by the details of the chemical structure of the polycations. The possible adsorption of polyelectrolytes at these amphiphilic tubular structures, stabilized by means of hydrophobic forces, is far from obvious and demonstrates an applicable route to the build-up of more complex nanostructures in solution by means of a self-assembly process.

Keywords

Polyelectrolyte J-aggregate Tubular aggregate Layer-by-layer adsorption 

Notes

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft (DFG) via the Max-Planck Research School on Biomimetic Systems, the Collaborative Research Centre 951 (“Hybrid Inorganic/Organic Systems for Opto-Electronics (HIOS)”), and the Collaborative Research Centre 448 (“Mesoscopically structured systems”). We gratefully acknowledge the Joint Lab of Structural Research between Helmholtz-Zentrum Berlin, Humboldt-Universität zu Berlin and Technische Universität Berlin. We thank Yan Qiao for support and valuable discussions and we are grateful to E. Poblenz for her help with sample preparation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2019_4487_MOESM1_ESM.docx (9.1 mb)
ESM 1 (DOCX 9267 kb).

References

  1. 1.
    Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci 99(8):4769–4774CrossRefGoogle Scholar
  2. 2.
    Aliprandi A, Mauro M, De Cola L (2015) Controlling and imaging biomimetic self-assembly. Nat Chem 8:10CrossRefGoogle Scholar
  3. 3.
    Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37(16):2201–2205CrossRefGoogle Scholar
  4. 4.
    Sukhorukov GB, Donath E, Lichtenfeld H, Knippel E, Knippel M, Budde A, Möhwald H (1998) Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloids Surf A Physicochem Eng Asp 137(1–3):253–266CrossRefGoogle Scholar
  5. 5.
    Schönhoff M (2003) Layered polyelectrolyte complexes: physics of formation and molecular properties. J Phys Condens Matter 15(49):R1781–R1808CrossRefGoogle Scholar
  6. 6.
    Caruso F, Lichtenfeld H, Giersig M, Möhwald H (1998) Electrostatic self-assembly of silica nanoparticle− polyelectrolyte multilayers on polystyrene latex particles. J Am Chem Soc 120(33):8523–8524CrossRefGoogle Scholar
  7. 7.
    Caruso RA, Susha A, Caruso F (2001) Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres. Chem Mater 13(2):400–409CrossRefGoogle Scholar
  8. 8.
    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237CrossRefGoogle Scholar
  9. 9.
    Sukhorukov GB, Donath E, Davis S, Lichtenfeld H, Caruso F, Popov VI, Möhwald H (1998) Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design. Polym Adv Technol 9(10–11):759–767CrossRefGoogle Scholar
  10. 10.
    Gössl I, Shu L, Schlüter AD, Rabe JP (2002) Molecular structure of single DNA complexes with positively charged dendronized polymers. J Am Chem Soc 124(24):6860–6865CrossRefGoogle Scholar
  11. 11.
    Pham TD, Bui TT, Nguyen VT, Bui TKV, Tran TT, Phan QC, Pham TD, Hoang TH (2018) Adsorption of polyelectrolyte onto nanosilica synthesized from rice husk: characteristics, mechanisms, and application for antibiotic removal. Polymers 10(2):220CrossRefGoogle Scholar
  12. 12.
    Wen-Jing S, Jin-Zhi D, Tian-Meng S, Pei-Zhuo Z, Jun W (2010) Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small 6(2):239–246CrossRefGoogle Scholar
  13. 13.
    Schneider G, Decher G (2004) From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres. Nano Lett 4(10):1833–1839CrossRefGoogle Scholar
  14. 14.
    Schlenoff JB, Dubas ST (2001) Mechanism of polyelectrolyte multilayer growth: charge overcompensation and distribution. Macromolecules 34(3):592–598CrossRefGoogle Scholar
  15. 15.
    Schwarz B, Schönhoff M (2002) Surface potential driven swelling of polyelectrolyte multilayers. Langmuir 18(8):2964–2966CrossRefGoogle Scholar
  16. 16.
    Netz RR, Andelman D (2003) Neutral and charged polymers at interfaces. Phys Rep 380(1–2):1–95CrossRefGoogle Scholar
  17. 17.
    Dubas ST, Schlenoff JB (1999) Factors controlling the growth of polyelectrolyte multilayers. Macromolecules 32(24):8153–8160CrossRefGoogle Scholar
  18. 18.
    Choi J, Rubner MF (2005) Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 38(1):116–124CrossRefGoogle Scholar
  19. 19.
    Lösche M, Schmitt J, Decher G, Bouwman WG, Kjaer K (1998) Detailed structure of molecularly thin polyelectrolyte multilayer films on solid substrates as revealed by neutron reflectometry. Macromolecules 31(25):8893–8906CrossRefGoogle Scholar
  20. 20.
    Blokzijl W, Engberts JB (1993) Hydrophobic effects. Opinions and facts. Angew Chem Int Ed Engl 32(11):1545–1579CrossRefGoogle Scholar
  21. 21.
    Kotov N (1999) Layer-by-layer self-assembly: the contribution of hydrophobic interactions. Nanostruct Mater 12(5–8):789–796CrossRefGoogle Scholar
  22. 22.
    Schönhoff M, Söderman O (1997) PFG-NMR diffusion as a method to investigate the equilibrium adsorption dynamics of surfactants at the solid/liquid interface. J Phys Chem B 101(41):8237–8242CrossRefGoogle Scholar
  23. 23.
    McQuigg DW, Kaplan JI, Dubin PL (1992) Critical conditions for the binding of polyelectrolytes to small oppositely charged micelles. J Phys Chem 96(4):1973–1978CrossRefGoogle Scholar
  24. 24.
    Majewski J, Wong JY, Park CK, Seitz M, Israelachvili JN, Smith GS (1998) Structural studies of polymer-cushioned lipid bilayers. Biophys J 75(5):2363–2367CrossRefGoogle Scholar
  25. 25.
    Yaroslavov AA, Rakhnyanskaya AA, Yaroslavova EG, Efimova AA, Menger FM (2008) Polyelectrolyte-coated liposomes: stabilization of the interfacial complexes. Adv Colloid Interf Sci 142(1–2):43–52CrossRefGoogle Scholar
  26. 26.
    von Berlepsch H, Kirstein S, Hania R, Pugzlys A, Böttcher C (2007) Modification of the nanoscale structure of the J-aggregate of a sulfonate-substituted amphiphilic carbocyanine dye through incorporation of surface-active additives. J Phys Chem B 111(7):1701–1711CrossRefGoogle Scholar
  27. 27.
    Eisele DM, Knoester J, Kirstein S, Rabe JP, Vanden Bout DA (2009) Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates. Nat Nanotechnol 4(10):658–663CrossRefGoogle Scholar
  28. 28.
    Megow J, Rohr MI, Schmidt am Busch M, Renger T, Mitric R, Kirstein S, Rabe JP, May V (2015) Site-dependence of van der Waals interaction explains exciton spectra of double-walled tubular J-aggregates. Phys Chem Chem Phys 17(10):6741–6747CrossRefGoogle Scholar
  29. 29.
    Kobayashi, T. (2012) J-aggregates, vol. 2, World ScientificGoogle Scholar
  30. 30.
    Würthner F, Kaiser TE, Saha-Möller CR (2011) J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Angew Chem Int Ed 50(15):3376–3410CrossRefGoogle Scholar
  31. 31.
    Kirstein S, Dähne S (2006) J-aggregates of amphiphilic cyanine dyes: self-organization of artificial light harvesting complexes. International Journal of Photoenergy 2006:1–21Google Scholar
  32. 32.
    Ctl D, Klugkist JA, Knoester J (2002) Optical properties of helical cylindrical molecular aggregates: the homogeneous limit. J Phys Chem B 106(44):11474–11486CrossRefGoogle Scholar
  33. 33.
    Eisele D, Cone C, Bloemsma E, Vlaming S, Van Der Kwaak C, Silbey RJ, Bawendi MG, Knoester J, Rabe J, Bout DV (2012) Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes. Nat Chem 4(8):655–662CrossRefGoogle Scholar
  34. 34.
    Didraga Ctl PA, Hania PR, von Berlepsch H, Duppen K, Knoester J (2004) Structure, spectroscopy, and microscopic model of tubular carbocyanine dye aggregates. J Phys Chem B 108(39):14976–14985CrossRefGoogle Scholar
  35. 35.
    Jachimska B, Jasiński T, Warszyński P, Adamczyk Z (2010) Conformations of poly (allylamine hydrochloride) in electrolyte solutions: experimental measurements and theoretical modeling. Colloids Surf A Physicochem Eng Asp 355(1–3):7–15CrossRefGoogle Scholar
  36. 36.
    Dautzenberg H, Görnitz E, Jaeger W (1998) Synthesis and characterization of poly (diallyldimethylammonium chloride) in a broad range of molecular weight. Macromol Chem Phys 199(8):1561–1571CrossRefGoogle Scholar
  37. 37.
    von Harpe A, Petersen H, Li Y, Kissel T (2000) Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Control Release 69(2):309–322CrossRefGoogle Scholar
  38. 38.
    Qiao Y, Polzer F, Kirmse H, Steeg E, Kühn S, Friede S, Kirstein S, Rabe JP (2015) Nanotubular J-aggregates and quantum dots coupled for efficient resonance excitation energy transfer. ACS Nano 9(2):1552–1560CrossRefGoogle Scholar
  39. 39.
    Steeg E, Kirmse H, Rabe JP, Kirstein S (2018) Silver iodide nanowires grown within tubular J-aggregates. J Colloid Interface Sci 530:424–432CrossRefGoogle Scholar
  40. 40.
    von Berlepsch H, Böttcher C, Ouart A, Burger C, Dähne S, Kirstein S (2000) Supramolecular structures of J-aggregates of carbocyanine dyes in solution. J Phys Chem B 104(22):5255–5262CrossRefGoogle Scholar
  41. 41.
    Dubochet J, Adrian M, Chang J-J, Homo J-C, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21(2):129–228CrossRefGoogle Scholar
  42. 42.
    Eisele DM, Arias DH, Fu X, Bloemsma EA, Steiner CP, Jensen RA, Rebentrost P, Eisele H, Tokmakoff A, Lloyd S, Nelson KA, Nicastro D, Knoester J, Bawendi MG (2014) Robust excitons inhabit soft supramolecular nanotubes. Proc Natl Acad Sci 111(33):E3367–E3375CrossRefGoogle Scholar
  43. 43.
    Evans FD, Wennerström H (eds) (1999) The colloidal domain: where physics, chemistry, biology, and technology meet, 2nd edn. Wiley, New YorkGoogle Scholar
  44. 44.
    Eisfeld A, Vlaming SM, Malyshev VA, Knoester J (2010) Excitons in molecular aggregates with Levy-type disorder: anomalous localization and exchange broadening of optical spectra. Phys Rev Lett 105(13):137402CrossRefGoogle Scholar
  45. 45.
    Schneider G, Decher G (2008) Functional core/shell nanoparticles via layer-by-layer assembly. Investigation of the experimental parameters for controlling particle aggregation and for enhancing dispersion stability. Langmuir 24(5):1778–1789CrossRefGoogle Scholar
  46. 46.
    von Berlepsch H, Kirstein S, Böttcher C (2004) Supramolecular structure of J-aggregates of a sulfonate substituted amphiphilic carbocyanine dye in solution: methanol-induced ribbon-to-tubule transformation. J Phys Chem B 108(48):18725–18733CrossRefGoogle Scholar
  47. 47.
    Liu Y, Wu DC, Zhang WD, Jiang X, He CB, Chung TS, Goh SH, Leong KW (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem 117(30):4860–4863CrossRefGoogle Scholar
  48. 48.
    Block S, Helm CA (2009) Single polyelectrolyte layers adsorbed at high salt conditions: polyelectrolyte brush domains coexisting with flatly adsorbed chains. Macromolecules 42(17):6733–6740CrossRefGoogle Scholar
  49. 49.
    Kirstein S, von Berlepsch H, Böttcher C, Burger C, Ouart A, Reck G, Dähne S (2000) Chiral J-aggregates formed by achiral cyanine dyes. Chemphyschem 1(3):146–150CrossRefGoogle Scholar
  50. 50.
    Qiao Y, Polzer F, Kirmse H, Kirstein S, Rabe JP (2015) Nanohybrids from nanotubular J-aggregates and transparent silica nanoshells. Chem Commun 51(60):11980–11982CrossRefGoogle Scholar
  51. 51.
    Qiao Y, Polzer F, Kirmse H, Steeg E, Kirstein S, Rabe JP (2014) In situ synthesis of semiconductor nanocrystals at the surface of tubular J-aggregates. J Mater Chem C 2(43):9141–9148CrossRefGoogle Scholar
  52. 52.
    Steeg E, Polzer F, Kirmse H, Qiao Y, Rabe JP, Kirstein S (2016) Nucleation, growth, and dissolution of silver nanostructures formed in nanotubular J-aggregates of amphiphilic cyanine dyes. J Colloid Interface Sci 472:187–194CrossRefGoogle Scholar
  53. 53.
    Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2 72:1525–1568CrossRefGoogle Scholar
  54. 54.
    Odijk T (1980) Binding of long flexible chains to a rodlike macromolecule. Macromolecules 13(6):1542–1546.  https://doi.org/10.1021/ma60078a033 CrossRefGoogle Scholar
  55. 55.
    Cherstvy AG, Winkler RG (2011) Polyelectrolyte adsorption onto oppositely charged interfaces: unified approach for plane, cylinder, and sphere. Phys Chem Chem Phys 13(24):11686–11693CrossRefGoogle Scholar
  56. 56.
    Cherstvy AG, Winkler RG (2004) Complexation of semiflexible chains with oppositely charged cylinder. J Chem Phys 120(19):9394–9400CrossRefGoogle Scholar
  57. 57.
    Cherstvy A, Winkler R (2006) Strong and weak adsorptions of polyelectrolyte chains onto oppositely charged spheres. J Chem Phys 125(6):064904CrossRefGoogle Scholar
  58. 58.
    Griffiths PC, Paul A, Stilbs P, Petterson E (2005) Charge on poly (ethylene imine): comparing electrophoretic NMR measurements and pH titrations. Macromolecules 38(8):3539–3542CrossRefGoogle Scholar
  59. 59.
    Griffiths PC, Paul A, Fallis IA, Wellappili C, Murphy DM, Jenkins R, Waters SJ, Nilmini R, Heenan RK, King SM (2007) Derivatizing weak polyelectrolytes—solution properties, self-aggregation, and association with anionic surfaces of hydrophobically modified poly (ethylene imine). J Colloid Interface Sci 314(2):460–469CrossRefGoogle Scholar
  60. 60.
    Qu F, Li NB, Luo HQ (2013) Highly sensitive fluorescent and colorimetric pH sensor based on polyethylenimine-capped silver nanoclusters. Langmuir 29(4):1199–1205CrossRefGoogle Scholar
  61. 61.
    Park IH, Choi E-J (1996) Characterization of branched polyethyleneimine by laser light scattering and viscometry. Polymer 37(2):313–319CrossRefGoogle Scholar
  62. 62.
    Tarabia M, Hong H, Davidov D, Kirstein S, Steitz R, Neumann R, Avny Y (1998) Neutron and x-ray reflectivity studies of self-assembled heterostructures based on conjugated polymers. J Appl Phys 83(2):725–732CrossRefGoogle Scholar
  63. 63.
    Lavalle P, Gergely C, Cuisinier F, Decher G, Schaaf P, Voegel J, Picart C (2002) Comparison of the structure of polyelectrolyte multilayer films exhibiting a linear and an exponential growth regime: an in situ atomic force microscopy study. Macromolecules 35(11):4458–4465CrossRefGoogle Scholar
  64. 64.
    Büscher K, Graf K, Ahrens H, Helm CA (2002) Influence of adsorption conditions on the structure of polyelectrolyte multilayers. Langmuir 18(9):3585–3591CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Physik, Humboldt-Universität zu BerlinBerlinGermany
  2. 2.IRIS Adlershof, Humboldt-Universität zu BerlinBerlinGermany
  3. 3.Research Center of Electron MicroscopyFreie Universität BerlinBerlinGermany
  4. 4.Institut für Chemie, Technische Universität BerlinBerlinGermany

Personalised recommendations