Skip to main content
Log in

Tailoring PNIPAM hydrogels for large temperature-triggered changes in mechanical properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

N-isopropylacrylamide (NIPAM)-based hydrogel films are used for touch-controlled applications, where the temperature-induced change in the mechanical properties is utilized to create tactile feedback. N,N-methylenebisacrylamide (BIS) and poly(ethylene glycol)diacrylate (PEGDA) are used as cross-linkers to study the influence of their size and concentration on the viscoelastic properties in a temperature-controlled rheology setup. The changes in water content between swollen and collapsed state of the hydrogel samples increase with decreasing cross-linking density and increasing size of the cross-linker resulting in bigger meshes in the network. The difference in the viscoelastic properties of the hydrogels increases with increasing deswelling ratio and is highest for the P(NIPAM-PEGDA) hydrogels with low cross-linking density with a 50-fold increase in the storage modulus. The deswelling ratio of these P(NIPAM-PEGDA) hydrogels is up to five times higher compared to the P(NIPAM-BIS) hydrogels of the same cross-linking density. The mesh sizes are estimated from the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haq MA, Su Y, Wang D (2017) . Mater Sci Eng C 70:842. https://doi.org/10.1016/j.msec.2016.09.081

    Article  CAS  Google Scholar 

  2. Miruchna V, Walter R, Lindlbauer D, Lehmann M, von Klitzing R, Müller J (2015) .. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, UIST ’15, https://doi.org/10.1145/2807442.2807487

  3. Kim CC, Lee HH, Oh KH, Sun JY (2016) . Science 353:682. https://doi.org/10.1126/science.aaf8810

    Article  CAS  PubMed  Google Scholar 

  4. Shibayama M, Tanaka T (1993) . Adv Polym Sci 109:1. https://doi.org/10.1007/3-540-56791-7-1

    Article  CAS  Google Scholar 

  5. Ashraf S, Park H, Park H, Lee SH (2016) . Macromol Res 24:297. https://doi.org/10.1007/s13233-016-4052-2

    Article  CAS  Google Scholar 

  6. Ahmed EM (2015) . J Adv Res 6:105. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  7. Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) . Nanomaterials 5:2054. https://doi.org/10.3390/nano5042054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Varghese S, Elisseeff JH (2006) . Adv Polym Sci 203:95. https://doi.org/10.1007/12-072

    Article  CAS  Google Scholar 

  9. Fänger C, Wack H, Ulbricht M (2006) . Macromol Biosci 6:393. https://doi.org/10.1002/mabi.200600027

    Article  CAS  PubMed  Google Scholar 

  10. Son KH, Lee JW (2016) . Materials 9:1. https://doi.org/10.3390/ma9100854

    Article  CAS  Google Scholar 

  11. Nayak S, Lyon LA (2005) . Angew Chem Int Ed 44:7688. https://doi.org/10.1002/anie.200501321

    Article  CAS  Google Scholar 

  12. Xia LW, Xie R, Ju XJ, Wang W, Chen Q, Chu LY (2013) . Nat Commun 4:2226. https://doi.org/10.1038/ncomms3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matzelle TR, Geuskens G, Kruse N (2003) . Macromolecules 36:2926. https://doi.org/10.1021/ma021719p

    Article  CAS  Google Scholar 

  14. Burmistrova A, Richter M, Eisele M, Üzüm C, von Klitzing R (2011) . Polymers 3:1575. https://doi.org/10.3390/polym3041575

    Article  CAS  Google Scholar 

  15. Backes S, Krause P, Tabaka W, Witt MU, von Klitzing R (2017) . Langmuir 33:14269. https://doi.org/10.1021/acs.langmuir.7b02903. https://doi.org/10.1021/acs.

    Article  CAS  PubMed  Google Scholar 

  16. Di Lorenzo F, Hellwig J, von Klitzing R, Seiffert S (2015) . ACS Macro Lett 4:698. https://doi.org/10.1021/acsmacrolett.5b00228

    Article  CAS  Google Scholar 

  17. Adrus N, Ulbricht M (2013) . React Funct Polym 73:141. https://doi.org/10.1016/j.reactfunctpolym.2012.08.015

    Article  CAS  Google Scholar 

  18. Puleo GL, Zulli F, Povanelli M, Giordano M, Mazzolai B, Beccai L, Andreozzi L (2013) . React Funct Polym 73:1306. https://doi.org/10.1016/j.reactfunctpolym.2013.07.004

    Article  CAS  Google Scholar 

  19. Klatzky R, Pawluk D, Peer A (2013) . Proc IEEE 101:2081. https://doi.org/10.1109/JPROC.2013.2248691

    Article  Google Scholar 

  20. Arendt-Nielsen L, Chen AC (2003) . Neurophysiol Clin = Clin Neurophysiol 33:259. https://doi.org/10.1016/j.neucli.2003.10.005

    Article  CAS  Google Scholar 

  21. Kato N, Sakai Y, Shibata S (2003) . Macromolecules 36:961. https://doi.org/10.1021/ma0214198

    Article  CAS  Google Scholar 

  22. Grillet AM, Wyatt N, Gloe LM (2012) Polymer gel rheology and adhesion. https://doi.org/10.5772/36975

  23. Park TG, Hoffman AS (1994) . J Appl Polym Sci 52:85. https://doi.org/10.1002/app.1994.070520110

    Article  CAS  Google Scholar 

  24. Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim YJ, Narain R, Idota N, Hoffman JM (2014) Smart hydrogels. https://doi.org/10.1007/978-4-431-54400-5-2

  25. Anseth KS, Bowman CN, Brannon-Peppas L (1996) . Biomaterials 17:1647. https://doi.org/10.1016/0142-9612(96)87644-7

    Article  CAS  PubMed  Google Scholar 

  26. Jensen M, Bach A, Hassager O, Skov A (2009) . Int J Adhes Adhes 29:687

    Article  CAS  Google Scholar 

  27. Calvet D, Wong JY, Giasson S (2004) . Macromolecules 37:7762. https://doi.org/10.1021/ma049072r

    Article  CAS  Google Scholar 

  28. Pritz T (1998) . J Sound Vib 214:83. https://doi.org/10.1006/jsvi.1998.1534. https://doi.org/10.1006/jsvi.

    Article  Google Scholar 

  29. Aangenendt FJ, Mattsson J, Ellenbroek WG, Wyss HM (2017) . Phys Rev Appl 8:014003. https://doi.org/10.1103/PhysRevApplied.8.014003

    Article  Google Scholar 

  30. Schmidt S, Zeiser M, Hellweg T, Duschl C, Fery A, Möhwald H (2010) . Adv Funct Mater 20:3235. https://doi.org/10.1002/adfm.201000730

    Article  CAS  Google Scholar 

  31. Fernandes PAL, Schmidt S, Zeiser M, Fery A, Hellweg T (2010) . Soft Matter 6:3455. https://doi.org/10.1039/c0sm00275e

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Benjamin von Lospichl and Sarah Schatte are thanked for support with the rheology measurements, and Marc Griffel from the mass spectrometry analytic centre of the Institute of Chemistry at TU Berlin is acknowledged for his service.

Funding

The authors thank the Deutsche Forschungsgemeinschaft (KL1165/15-1) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regine von Klitzing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

The following file is available:

– SI: Details about the LC-MS analysis and the performed frequency sweeps in the rheological experiments.

M. Lehmann and P. Krause contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 366 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmann, M., Krause, P., Miruchna, V. et al. Tailoring PNIPAM hydrogels for large temperature-triggered changes in mechanical properties. Colloid Polym Sci 297, 633–640 (2019). https://doi.org/10.1007/s00396-019-04470-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04470-0

Keywords

Navigation