Skip to main content
Log in

Precision polymer network science with tetra-PEG gels—a decade history and future

  • Invited Review
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Tetra-PEG gels, near-ideal polymer networks prepared by cross-end-coupling of A and B tetra-functional poly(ethylene glycol) (PEG) prepolymers having complementary end groups, were first fabricated in 2008. Comparisons of the mechanical properties with those of theoretical predictions indicate negligible fractions of defects and/or entanglements. Small-angle neutron scattering profiles of Tetra-PEG gels are very similar to those of the corresponding polymer solutions, suggesting negligible inhomogeneities originated from cross-linking. Due to the remarkable mechanical properties, extremely low structural inhomogeneities, and biocompatibility, tetra-PEG gels have gathered much attention since its discovery. The number of citation of Tetra-PEG gels is now over 2700 and is still growing rapidly. Chemical reaction kinetic studies also show a high degree of cross-linking reaction and its tunability, which leads to an idea of cross-linking probability tuned (p-tuned) networks. Versatility of the cross-coupling reactions allows us to prepare not only hydrogels but also organogels and ion gels, copolymer gels, non-stoichiometric gels, and so on. A decade history of the Tetra-PEG gels is reviewed with a variety of potential applications encompassing multiresponsive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Baekeland LH (1907) Method of making insoluble products of phenol and formaldehyde, US Patent, US942699A

  2. Gardziella A, Piato JA, Knop A (1999) Phenolic resins: chemistry, applications, standardization, safety, and ecology. Springer, Berlin

    Google Scholar 

  3. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  4. Thompson RC, Swan SH, Moore CJ, vom Saal FS (2009) Our plastic age. Philos Trans R Soc B 364:1973–1976

    Article  Google Scholar 

  5. Llorente MA, Mark JE (1979) Model networks of end-linked polydimethylsiloxane chains. 4. Elastomeric properties of the tetrafunctional networks prepared at different degrees of dilution. J Chem Phys 71:682–689. https://doi.org/10.1063/1.438354

    Article  CAS  Google Scholar 

  6. Mark JE, Rahalkar RR, Sullivan JL (1979) Model networks of end-linked polydimethylsiloxane chains. 3. effect of the functionality of the cross links. J Chem Phys 70:1794–1797. https://doi.org/10.1063/1.437652

    Article  CAS  Google Scholar 

  7. Mark JE, Erman B (1988) Rubberlike elasticity a molecular primer. Wiley, Hoboken

    Google Scholar 

  8. Webster OW (1991) Living polymerization methods. Science:251, 887–893

  9. Hild G (1998) Model networks based on ‘endlinking’ processes: synthesis, structure and properties. Prog Polym Sci 23:1019–1149

    Article  CAS  Google Scholar 

  10. Wallace DG, Cruise GM, Rhee WM, Schroeder JA, Prior JJ, Ju J, Maroney M, Duronio J, Ngo MH, Estridge T, Coker GC (2001) A tissue sealant based on reactive multifunctional polyethylene glycol. J Biomed Mater Res 58:545–555. https://doi.org/10.1002/jbm.1053

    Article  CAS  PubMed  Google Scholar 

  11. Bouten PJM, Zonjee M, Bender J, Yauw STK, van Goor H, van Hest JCM, Hoogenboom R (2014) The chemistry of tissue adhesive materials. Prog Polym Sci 39:1375–1405. https://doi.org/10.1016/j.progpolymsci.2014.02.001

    Article  CAS  Google Scholar 

  12. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung U (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41(14):5379–5384. https://doi.org/10.1021/ma800476x

    Article  CAS  Google Scholar 

  13. Matsunaga T, Sakai T, Akagi Y, Chung U, Shibayama M (2009) Structure characterization of tetra-PEG gel by small-angle neutron scattering. Macromolecules 42:1344–1351. https://doi.org/10.1021/ma802280n

    Article  CAS  Google Scholar 

  14. Matsunaga T, Sakai T, Akagi Y, Chung U, Shibayama M (2009) SANS and SLS studies on tetra-arm PEG gels in as-prepared and swollen states. Macromolecules 42(16):6245–6252. https://doi.org/10.1021/ma901013q

    Article  CAS  Google Scholar 

  15. Hiroi T, Ohl M, Sakai T, Shibayama M (2014) Multiscale dynamics of inhomogeneity-free polymer gels. Macromolecules 47:763–770. https://doi.org/10.1021/ma402439v

    Article  CAS  Google Scholar 

  16. Akagi Y, Katashima T, Fujii K, Matsunaga T, Chung U, Shibayama M, Sakai T (2011) Examination of the theories of rubber elasticity using an ideal polymer network. Macromolecules 44:5817–5821. https://doi.org/10.1021/ma201088r

    Article  CAS  Google Scholar 

  17. Sakai T, Kurakazu M, Akagi Y, Shibayama M, Chung U (2012) Effect of swelling and deswelling on the elasticity of polymer networks in the dilute to semi-dilute region. Soft Matter 8(9):2730–2736. https://doi.org/10.1039/C2sm07043j

    Article  CAS  Google Scholar 

  18. Shibayama M (2012) Structure-mechanical property relationship of tough hydrogels. Soft Matter 8:8030–8038. https://doi.org/10.1039/C2SM25325A

    Article  CAS  Google Scholar 

  19. Nishi K, Chijiishi M, Katsumoto Y, Nakao T, Fujii K, Chung U, Noguchi H, Sakai T, Shibayama M (2012) Rubber elasticity for incomplete polymer networks. J Chem Phys 137:224903. https://doi.org/10.1063/1.4769829

    Article  CAS  PubMed  Google Scholar 

  20. Nishi K, Noguchi H, Sakai T, Shibayama M (2015) Rubber elasticity for percolation network consisting of Gaussian chains. J Chem Phys 143:184905-1–184905-8. https://doi.org/10.1063/1.4935395

    Article  CAS  Google Scholar 

  21. Hiroi T, Kondo S, Sakai T, Gilbert EP, Han Y-S, Kim T-H, Shibayama M (2016) Fabrication and structural characterization of module-assembled amphiphilic conetwork gels. Macromolecules 49:4940–4947. https://doi.org/10.1021/acs.macromol.6b00842

    Article  CAS  Google Scholar 

  22. Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U-i, Sakai T (2014) “Nonswellable” hydrogel without mechanical hysteresis. Science 343(6173):873–875. https://doi.org/10.1126/science.1247811

    Article  CAS  PubMed  Google Scholar 

  23. Hayashi K, Okamoto F, Hoshi S, Katashima T, Zujur DC, Li X, Shibayama M, Gilbert EP, Chung U, Ohba S, Oshika T, Sakai T (2017) Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body. Nat Biomed Eng 1:0044(1)–0044(7). https://doi.org/10.1038/s41551-017-0044

    Article  Google Scholar 

  24. Kurakazu M, Katashima T, Chijiishi M, Nishi K, Akagi Y, Matsunaga T, Shibayama M, Chung U, Sakai T (2010) Evaluation of gelation kinetics of tetra-PEG gel. Macromolecules 43(8):3935–3940. https://doi.org/10.1021/Ma100176f

    Article  CAS  Google Scholar 

  25. Fujii K, Asai H, Ueki T, Sakai T, Imaizumi S, Chung U, Watanabe M, Shibayama M (2012) High-performance ion gel with tetra-PEG network. Soft Matter 8(6):1756–1759. https://doi.org/10.1039/C2sm07119c

    Article  CAS  Google Scholar 

  26. Asai H, Fujii K, Ueki T, Sakai T, Chung U, Watanabe M, Han YS, Kim TH, Shibayama M (2012) Structural analysis of high performance ion-gel comprising tetra-PEG network. Macromolecules 45:3902–3909. https://doi.org/10.1021/ma300244u

    Article  CAS  Google Scholar 

  27. Hashimoto K, Fujii K, Nishi K, Sakai T, Shibayama M (2016) Nearly ideal polymer network ion gel prepared in pH-buffering ionic liquid. Macromolecules 49:344–352. https://doi.org/10.1021/acs.macromol.5b02360

    Article  CAS  Google Scholar 

  28. Nishi K, Fujii K, Chijiishi M, Katsumoto Y, Chung U, Sakai T, Shibayama M (2012) Kinetic study for AB-type coupling reaction of tetra-arm polymers. Macromolecules 45(2):1031–1036. https://doi.org/10.1021/Ma202386k

    Article  CAS  Google Scholar 

  29. Nishi K, Fujii K, Katsumoto Y, Sakai T, Shibayama M (2014) Kinetic aspect on gelation mechanism of tetra-PEG hydrogel. Macromolecules 47(10):3274–3281. https://doi.org/10.1021/ma500662j

    Article  CAS  Google Scholar 

  30. Li X, Hirosawa K, Sakai T, Gilbert EP, Shibayama M (2017) SANS study on critical polymer clusters of tetra-functional polymers. Macromolecules 50:3655–3661. https://doi.org/10.1021/acs.macromol.7b00528

    Article  CAS  Google Scholar 

  31. Fujiyabu T, Li X, Shibayama M, Chung U-i, Sakai T (2017) Permeation of water through hydrogels with controlled network structure. Macomolecules 50:9411–9416. https://doi.org/10.1021/acs.macromol.7b01807

    Article  CAS  Google Scholar 

  32. Li X, Watanabe N, Sakai T, Shibayama M (2017) Probe diffusion of sol−gel transition in an isorefractive polymer solution. Macromolecules 50:2916–2922. https://doi.org/10.1021/acs.macromol.6b02573

    Article  CAS  Google Scholar 

  33. Apostolides DE, Sakai T, Patrickios CS (2017) Dynamic covalent star poly(ethylene glycol) model hydrogels: a new platform for mechanically robust, multifunctional materials. Macomolecules 50:2155–2164. https://doi.org/10.1021/acs.macromol.7b00236

    Article  CAS  Google Scholar 

  34. Apostolides DE, Patrickios CS, Sakai T, Guerre M, Lopez G, Améduri B, Ladmiral V, Simon M, Gradzielski M, Clemens D, Krumm C, Tiller JC, Ernould B, Gohy J-F (2018) Near-model amphiphilic polymer conetworks based on four-arm stars of poly(vinylidene fluoride) and poly(ethylene glycol): synthesis and characterization. Macomolecules 51:2476–2488. https://doi.org/10.1021/acs.macromol.7b02475

    Article  CAS  Google Scholar 

  35. Sakai T, Akagi Y, Matsunaga T, Kurakazu M, Chung U, Shibayama M (2010) Highly elastic and deformable hydrogel formed from tetra-arm polymers. Macromol Rapid Commun 31(22):1954–1959. https://doi.org/10.1002/Marc.201000286

    Article  CAS  PubMed  Google Scholar 

  36. Akagi Y, Matsunaga T, Shibayama M, Chung U, Sakai T (2010) Evaluation of topological defects in Tetra-PEG Gels. Macromolecules 43(1):488–493. https://doi.org/10.1021/Ma9019009

    Article  CAS  Google Scholar 

  37. Miller DR, Macosko CW (1976) A new derivation of post gel properties of network polymers. Macromolecules 9(2):206–211. https://doi.org/10.1021/ma60050a004

    Article  CAS  Google Scholar 

  38. Lange F, Schwenke K, Kurakazu M, Akagi Y, Chung U, Lang M, Sommer J-U, Sakai T, Saalwaechter K (2011) Connectivity and structural defects in model hydrogels: a combined proton NMR and Monte Carlo simulation study. Macromolecules 44:9666–9674. https://doi.org/10.1021/ma201847v

    Article  CAS  Google Scholar 

  39. Zhong M, Wang R, Kawamoto K, Olsen BD, Johnson JA (2016) Quantifying the impact of molecular defects on polymer network elasticity. Science 353:1264–1268. https://doi.org/10.1126/science.aag0184

    Article  CAS  PubMed  Google Scholar 

  40. Kuhn W (1936) Relationship between molecular size, static molecular shape and elastic characteristics of high polymer materials. Kolloid Z 76:258–271

    Article  CAS  Google Scholar 

  41. Guth E, James HM (1941) Elastic and thermoelastic properties of rubber like materials. Ind Eng Chem 33:624–629. https://doi.org/10.1021/ie50377a017

    Article  CAS  Google Scholar 

  42. Wall FT (1942) Statistical thermodynamics of rubber. J Chem Phys 10:132–134. https://doi.org/10.1063/1.1723668

    Article  CAS  Google Scholar 

  43. Wall FT, Flory PJ (1951) Statistical thermodynamics of rubber elasticity. J Chem Phys 19:1435–1439. https://doi.org/10.1063/1.1748098

    Article  CAS  Google Scholar 

  44. Treloar LRG (1975) The physics of rubber elasticity. Clarendon Press, Oxford

    Google Scholar 

  45. Erman B, Mark JE (1997) Structures and properties of rubberlike networks. Oxford University Press, Oxford

    Google Scholar 

  46. Nishi K, Fujii F, Chung U, Shibayama M, Sakai T (2017) Experimental observation of two features unexpected from the classical theories of rubber elasticity. Phys Rev Lett 119(26):26801. https://doi.org/10.1103/PhysRevLett.119.267801

    Article  Google Scholar 

  47. Feng S, Thorpe MF, Garboczi E (1985) Effective-medium theory of percolation on central-force elastic networks. Phys Rev B 31(1):276–280. https://doi.org/10.1103/PhysRevB.31.276

    Article  CAS  Google Scholar 

  48. Bastide J, Leibler L (1988) Large-scale heterogeneities in randomly cross-linked networks. Macromolecules 21:2647–2649. https://doi.org/10.1021/ma00186a058

    Article  CAS  Google Scholar 

  49. Panyukov S, Rabin Y (1996) Statistical physics of polymer gels. Phys Rep 269:1–132. https://doi.org/10.1016/0370-1573(95)00068-2

    Article  CAS  Google Scholar 

  50. Panyukov S, Rabin Y (1996) Polymer gels: frozen inhomogeneities and density fluctuations. Macromolecules 29:7960–7975. https://doi.org/10.1021/ma960164t

    Article  CAS  Google Scholar 

  51. Shibayama M (1998) Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys 199:1–30. https://doi.org/10.1002/(SICI)1521-3935(19980101)199:1<1::AID-MACP1>3.0.CO;2-M

    Article  CAS  Google Scholar 

  52. Hecht AM, Horkay F, Geissler E, Benoit JP (1991) Small-angle X-ray scattering from poly(viny1 acetate) solutions and networks swollen in acetone. Macromolecules 24:4183–4187. https://doi.org/10.1021/ma00014a035

    Article  CAS  Google Scholar 

  53. Takata S, Norisuye T, Shibayama M (2002) Small-angle neutron scattering study on preparation temperature dependence of thermosensitive gels. Macromolecules 35(12):4779–4784. https://doi.org/10.1021/ma0201126

    Article  CAS  Google Scholar 

  54. Seiffert S (2017) Scattering perspectives on nanostructural inhomogeneity in polymernetwork gels. Prog Polym Sci 66:1–21

    Article  CAS  Google Scholar 

  55. Horkay F, Nishi K, Shibayama M (2017) Decisive test of the ideal behavior of tetra-PEG gels. J Chem Phys 146:164905-1–164905-8. https://doi.org/10.1063/1.4982253

    Article  CAS  Google Scholar 

  56. Tanaka T, Hocker LO, Benedek GB (1973) Spectrum of light scattered from a viscoelastic gel. J Chem Phys 59:5151–5159. https://doi.org/10.1063/1.1680734

    Article  CAS  Google Scholar 

  57. Ornstein LS, Zernike F (1914) Acculental deviations of density and opalescence at the critical point of a simple substance. Proc Acad Sci Amsterdam 17:793–806

    Google Scholar 

  58. Stanley HE (1971) Introduction to phase transition and critical phenomena. Oxford University Press, New York

    Google Scholar 

  59. Hammouda B, Ho D, Kline S (2002) SANS from poly(ethylene oxide)/water systems. Macromolecules 35:8578–8585. https://doi.org/10.1021/ma011657n

    Article  Google Scholar 

  60. Zhou P, Brown W (1990) Static and dynamic properties of poly-(ethylene oxide) in methanol. Macromolecules 23:1131–1139. https://doi.org/10.1021/ma00206a035

    Article  CAS  Google Scholar 

  61. Hammouda B, Ho DL, Kline S (2004) Insight into clustering in poly(ethylene oxide) solutions. Macromolecules 37:6932–6937. https://doi.org/10.1021/ma049623d

    Article  CAS  Google Scholar 

  62. Polik WF, Burchard W (1983) Static light scattering from aqueous poly(ethylene oxide) solutions in the temperature range 20-90 °C. Macromolecules 16:978–982. https://doi.org/10.1021/ma00240a030

    Article  CAS  Google Scholar 

  63. Tsuji Y, Li X, Shibayama M (2018) Evaluation of mesh size in model polymer networks consisting of tetra-arm and linear poly(ethylene glycol)s. Gels 4:50(1)–50(12). https://doi.org/10.3390/gels4020050

    Article  CAS  Google Scholar 

  64. Matsunaga T, Asai H, Akagi Y, Sakai T, Chung U, Shibayama M (2011) SANS studies on tetra-PEG gel under uniaxial deformation. Macromolecules 44:1203–1210. https://doi.org/10.1021/ma102658e

    Article  CAS  Google Scholar 

  65. Khairulina K, Li X, Nishi K, Shibayama M, Chung U-i, Sakai T (2015) Electrophoretic mobility of semi-flexible double-stranded DNA in defect-controlled polymer networks: mechanism investigation and role of structural parameters. J Chem Phys 142(23):234904. https://doi.org/10.1063/1.4922367

    Article  CAS  PubMed  Google Scholar 

  66. Watanabe N, Li X, Shibayama M (2017) Probe diffusion during sol−gel transition of a radical polymerization system using isorefractive dynamic light scattering. Macromolecules 50:9726–9733. https://doi.org/10.1021/acs.macromol.7b02202

    Article  CAS  Google Scholar 

  67. Nishi K, Asai H, Fujii K, Han Y-S, Kim T-H, Sakai T, Shibayama M (2014) Small-angle neutron scattering study on defect-controlled polymer networks. Macromolecules 47:1801–1809. https://doi.org/10.1021/ma402590n

    Article  CAS  Google Scholar 

  68. Fujii K, Makino T, Hashimoto K, Sakai T, Kanakubo M, Shibayama M (2015) Carbon dioxide separation using a high-toughness ion gel with a tetra-armed polymer network. Chem Lett 44(1):17–19. https://doi.org/10.1246/cl.140795

    Article  CAS  Google Scholar 

  69. Kamata H, Chung U, Shibayama M, Sakai T (2012) Anomalous volume phase transition in a polymer gel with alternative hydrophilic–amphiphilic sequence. Soft Matter 8:2876–2879. https://doi.org/10.1039/c2sm25168j

    Article  CAS  Google Scholar 

  70. Kondo S, Hiroi T, Han YS, Kim TH, Shibayama M, Chung UI, Sakai T (2015) Reliable hydrogel with mechanical “fuse link” in an aqueous environment. Adv Mater 27:7407–7411. https://doi.org/10.1002/adma.201503130

    Article  CAS  PubMed  Google Scholar 

  71. Oshima K, Fujimoto T, Minami E, Mitsukami Y (2014) Model polyelectrolyte gels synthesized by end-linking of tetra-arm polymers with click chemistry: synthesis and mechanical properties. Macromolecules 47:7573–7580. https://doi.org/10.1021/ma501786h

    Article  CAS  Google Scholar 

  72. Morishima K, Li X, Oshima K, Mitsukami Y, Shibayama M (2018) Small-angle scattering study of tetra-poly(acrylic acid) gels. J Chem Phys 149:163301(1)–163301(8). https://doi.org/10.1063/1.5027665

    Article  CAS  Google Scholar 

  73. Shibayama M, Li X, Sakai T (2018) Gels: from soft matter to biomatter. Ind Eng Chem Res 57:1121–1128. https://doi.org/10.1021/acs.iecr.7b04614

    Article  CAS  Google Scholar 

  74. Kamata H, Chung U, Sakai T (2013) Shrinking kinetics of polymer gels with alternating hydrophilic/thermoresponsive prepolymer units. Macromolecules 46:4114–4119. https://doi.org/10.1021/ma400677z

    Article  CAS  Google Scholar 

  75. Nakagawa S, Li X, Kamata H, Sakai T, Gilbert EP, Shibayama M (2017) Microscopic structure of the “nonswellable” thermoresponsive amphiphilic conetwork. Macromolecules 50:3388–3395. https://doi.org/10.1021/acs.macromol.7b00486

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Ministry of Education, Science, Sports and Culture, Japan (Grants-in-Aid for Scientific Research (A), Nos. 18205025 (2006-2008), 22245018 (2010-2012), 25248027 (2013-2015), and 16H02277 (2016-2019), and for Scientific Research on Priority Areas, No. 18068004 (2006-2010). The SANS experiments were performed with the approval of Institute for Solid State Physics, The University of Tokyo, at Japan Atomic Energy Agency, Tokai, Japan, 40m-SANS, HANARO, Korea, and QUOKKA, ANSTO, Australia. The authors acknowledge stimulating discussions with Prof. Ung-il Chung, The University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Shibayama.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

This manuscript is an invited contribution associated with the Colloid and Polymer Science Lecture 2017, awarded to Mitsuhiro Shibayama jointly by the German Colloid Society and Springer at the meeting of the German Colloid Society in Munich on Oct. 10, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibayama, M., Li, X. & Sakai, T. Precision polymer network science with tetra-PEG gels—a decade history and future. Colloid Polym Sci 297, 1–12 (2019). https://doi.org/10.1007/s00396-018-4423-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4423-7

Keywords

Navigation