Skip to main content
Log in

d-Gluconic acid–based methotrexate prodrug–loaded mixed micelles composed of MDR reversing copolymer: in vitro and in vivo results

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The main aim of the present research was to synthesize carbohydrate (d-gluconic acid, DGA) prodrug of methotrexate (MTX) to improve the aqueous solubility and to develop mixed micelles (MMs) composed of d-α-tocopheryl poly (ethylene glycol) 1000 succinate (TPGS) as an MDR reversing copolymer and poloxamer 407 (P-407) to deliver the MTX prodrug to tumor tissue via enhanced permeability and retention (EPR) mechanism. MTX-DGA conjugate (MDGAC) was synthesized using Steglich esterification reaction. The MDGAC-loaded TPGS and P-407 MMs (MDGAC-TP MMs) were prepared by solvent evaporation technique. MDGAC-TP MMs showed low critical micelle concentration, high drug loading, sustained release profile, lower hemolytic behavior, higher in vitro cytotoxicity against the human carcinoma cell lines KB and MDR KBv, and significantly reduced in vivo toxicity. Therefore, the developed MDGAC-TP MMs could be a promising and effective approach for the development and treatment of MDR tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liang L, Lin SW, Dai W, Lu JK, Yang TY, Xiang Y, Zhang Y, Li RT, Zhang Q (2012) Novel cathepsin B-sensitive paclitaxel conjugate: higher water solubility, better efficacy and lower toxicity. J Control Release 160:618–629

    Article  CAS  Google Scholar 

  2. Feng SS, Chien S (2003) Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci 58:4087–4114

    Article  CAS  Google Scholar 

  3. Huang K, Shi B, Xu W, Ding J, Yang Y, Liu H, Zhuang X, Chen X (2015) Reduction-responsive polypeptide nanogel delivers antitumor drug for improved efficacy and safety. Acta Biomater 27:179–193

    Article  CAS  Google Scholar 

  4. Fu Q, Lv P, Chen Z, Ni D, Zhang L, Yue H, Yue Z, Wei W, Ma G (2015) Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane. Nanoscale 7:4020–4030

    Article  CAS  Google Scholar 

  5. Zhang Y, Jin T, Zhuo RX (2005) Methotrexate-loaded biodegradable polymeric micelles: preparation, physicochemical properties and in vitro drug release. Colloids Surf B: Biointerfaces 44(2–3):104–109

    Article  CAS  Google Scholar 

  6. Banerjee D, Mayer KP, Capiaux G, Budak AT, Gorlick R, Bertino JR (2002) Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase. Biochim Biophys Acta 1587(2–3):164–173

    Article  CAS  Google Scholar 

  7. Lorico A, Toffoli G, Boiocchi M, Ma D (1988) Accumulation of DNA strand breaks in cells exposed to methotrexate or N10-propargyl-5, 8-dideazafolic acid. Cancer Res 48(8):2036–2041

    CAS  PubMed  Google Scholar 

  8. Berger W, Setinek U, Hollaus P, Zidek T, Steiner E, Elbling L, Cantonati H, Attems J, Gsur A, Micksche M (2005) Multidrug resistance markers P-glycoprotein, multidrug resistance protein 1, and lung resistance protein in non-small cell lung cancer: prognostic implications. J Cancer Res Clin Oncol 131(6):355–363

    Article  CAS  Google Scholar 

  9. Thomas H, Coley HM (2003) Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10(2):159–165

    Article  Google Scholar 

  10. Garcion E, Lamprecht A, Heurtault B, Paillard A, Pouessel AA, Denizot B, Menei P, Benoît JP (2006) A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther 5(7):1710–1722

    Article  CAS  Google Scholar 

  11. Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P (2003) Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release 93(2):151–160

    Article  CAS  Google Scholar 

  12. Koziara JM, Whisman TR, Tseng MT, Mumper RJ (2006) In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors. J Control Release 112(3):312–319

    Article  CAS  Google Scholar 

  13. Minko T, Kopecková P, Pozharov V, Kopeck J (1998) HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line. J Control Release 54(2):223–233

    Article  CAS  Google Scholar 

  14. Minko T, Kopecková P, Kopeck J (2001) Preliminary evaluation of caspases-dependent apoptosis signaling pathways of free and HPMA copolymer bound doxorubicin in human ovarian carcinoma cells. J Control Release 71(3):227–237

    Article  CAS  Google Scholar 

  15. Batrakova VE, Kelly DL, Kabanov AV (2006) Alteration of genomic responses to doxorubicin and prevention of MDR in breast cancer cells by a polymer excipient: pluronic P85. Mol Pharm 3(2):113–123

    Article  CAS  Google Scholar 

  16. Matsumura Y (2007) Preclinical and clinical studies of anticancer drug-incorporated polymeric micelles. J Drug Target 15(7–8):507–517

    Article  CAS  Google Scholar 

  17. Wei Z, Hao J, Yuan S, Li Y, Juan W, Sha X, Fang X (2009) Paclitaxel-loaded pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm 376(1–2):176–185

    Article  CAS  Google Scholar 

  18. Kim D, Lee ES, Park K, Kwon IC, Bae YH (2008) Doxorubicin loaded pH-sensitive micelles: antitumoral efficacy against ovarian A2780/DOXR tumor. Pharm Res 25(9):2074–2082

    Article  CAS  Google Scholar 

  19. Liu J, He Y, Zhang J, Li J, Yu X, Cao Z, Meng F, Zhao Y, Wu X, Shen T, Hong Z (2016) Functionalized nanocarrier combined seizure-specific vector with P-glycoprotein modulation property for antiepileptic drug delivery. Biomaterials 74:64–76

    Article  CAS  Google Scholar 

  20. Bao Y, Guo Y, Zhuang X, Li D, Cheng B, Tan S, Zhang Z (2014) D-a-tocopherol polyethylene glycol succinate-based redox-sensitive paclitaxel prodrug for overcoming multidrug resistance in cancer cells. Mol Pharm 11:3196–3209

    Article  CAS  Google Scholar 

  21. Guo Y, Luo J, Tan S, Otieno BO, Zhang Z (2013) The applications of vitamin E TPGS in drug delivery. Eur J Pharm Sci 49:175–186

    Article  CAS  Google Scholar 

  22. Sang V, Sanjib K (2010) Synthesis, characterization, and biological evaluation of poly (L-glutamyl-glutamine) paclitaxel nanoconjugate. J Control Release 3:38–45

    Google Scholar 

  23. Manjappa AS, Kumbhar PS, Khopade PS, Patil AB, Disouza JI (2018) Mixed micelles as nano polymer therapeutics of docetaxel: increased in vitro cytotoxicity and decreased in vivo toxicity. Curr Drug Deliv 15(4):564–575

    Article  CAS  Google Scholar 

  24. Shi C, Zhang Z, Wang F, Ji X, Zhao Z, Luan Y (2015) Docetaxel loaded PEO-PPOPCL/TPGS mixed micelles for overcoming multidrug resistance and enhancing antitumor efficacy. J Mater Chem B 20(3):4259–4271

    Article  CAS  Google Scholar 

  25. Yanzuo C, Wei Z, Jijin G, Qiuyue R, Zhuoyang F, Weitong Z, Xiaoling F, Xianyi S (2013) Enhanced antitumor efficacy by methotrexate conjugated pluronic mixed micelles against KBv multidrug resistant cancer. J Pharm 452(1-2):421–433

  26. Yanzuo C, Xianyi S, Wei Z, Weitong Z, Zhuoyang F, Qiuyue R, Liangcen C, Xiaoling F (2013) Pluronic mixed micelles overcoming methotrexate multidrug resistance: in vitro and in vivo evaluation. Int J Nanomedicine 8:1463–1476

    Google Scholar 

  27. Jindal N, Mehta SK (2015) Nevirapine loaded poloxamer 407/pluronic P123 mixed micelles: optimization of formulation and in vitro evaluation. Colloids Surf B: Biointerfaces 129(1):100–106

    Article  CAS  Google Scholar 

  28. Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic block copolymer as novel polymer therapeutics for drug and gene delivery. J Control Release 82(2–3):189–212

    Article  CAS  Google Scholar 

  29. Wunder A, Stehle G, Schrenk HH, Hartung G, Heene DL, Maier BW, Sinn H (1998) Antitumor activity of methotrexate-albumin conjugates in rats bearing a walker-256 carcinoma. Int J Cancer 76(6):884–890

    Article  CAS  Google Scholar 

  30. Gholamhossein Y, Seyed MF, Afshin Z, Alireza S (2010) Synthesis and characterization of methotrexate polyethylene glycol esters as a drug delivery system. Chem Pharm Bull 58(2):147–153

  31. Kasim NA, Whitehouse M, Ramachandran C et al (2003) Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm 1:85–96

    Article  Google Scholar 

  32. Ronak SB, Ankitkumar SJ, Dinesh TM, Aarti GJ, Puthusserickal AR et al (2016) Soluplus based polymeric micelles and mixed micelles of lornoxicam: design, characterization and in vivo efficacy studies in rats. Ind J Pharm Edu Res 50(2):77–86

    Google Scholar 

  33. Zhang W, Junguo H, Shi Y, Yajuan L, Wu J, Xianyi S, Xiaoling F (2009). Int J Pharm 376:185

    Article  Google Scholar 

  34. Saxena V, Hussain MD (2012) Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer. Int J Nanomedicine 7:713–721

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Manjappa AS, Kumbhar PS, Patil AB, Disouza JI, Patravale VB (2018) Drug loaded polymeric mixed micelles: suitable approach to improve therapeutic performance of single copolymer micelles. Crit Rev Ther Drug Carr Syst 36(1):1–58

  36. Zhao D, Zhang H, Yang S, He W, Luan Y (2016) Redox-sensitive mPEG-SS-PTX/TPGS mixed micelles: an efficient drug delivery system for overcoming multidrug resistance. Int J Pharm 515:281–292

    Article  CAS  Google Scholar 

  37. Maria AG, Silvia P, Cristina P, Patrizia S, Angel C, Carmen AL, Sara N (2018) Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Mol Pharm 15(2):571–584

    Article  Google Scholar 

  38. Wang F, Zhang D, Zhang Q, Chen Y, Zheng D, Hao L, Duan C, Jia L, Liu G, Liu Y (2011) Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel-polymer micelles to over-come multi-drug resistance. Biomaterials 32:9444–9456

    Article  CAS  Google Scholar 

  39. Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130:98–106

    Article  CAS  Google Scholar 

  40. Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, Erhan SZ, Wu XY (2006) A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 23(7):1574–1585

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are greatly thankful to our Head of Institute and Institute Management for supporting this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arehalli S. Manjappa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumbhar, P.S., Birange, S., Atavale, M. et al. d-Gluconic acid–based methotrexate prodrug–loaded mixed micelles composed of MDR reversing copolymer: in vitro and in vivo results. Colloid Polym Sci 296, 1971–1981 (2018). https://doi.org/10.1007/s00396-018-4416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4416-6

Keywords

Navigation