Skip to main content

Magnetorheological characterization and electrospinnability of ultrasound-treated polymer solutions containing magnetic nanoparticles

Abstract

In order to fabricate a magnetic nanofibrous membrane by electrospinning, it is necessary to follow a suitable method for incorporating nanoparticles into a polymer solution. Ultrasound treatment represents a very effective technique for distributing magnetic nanoparticles within polymer solutions. Adverse effects caused by sonication over time on the given nanofibrous membrane (polymer degradation and appearance of defects) were evaluated by using rotational (magneto)rheometry, transmission and scanning electron microscopy, and magnetometry. A magnetorheological approach was selected to estimate the optimal duration of sonication, and findings were experimentally verified. It was concluded that the processed nanofibrous membrane showed promise as an advanced magnetoactive device.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    CAS  Article  Google Scholar 

  2. Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38:963–991

    CAS  Article  Google Scholar 

  3. Xue J, Xie J, Liu W, Xia Y (2017) Electrospun nanofibers: new concepts, materials and applications. Acc Chem Res 50:1976–1987

    CAS  Article  Google Scholar 

  4. Savva I, Constantinou D, Marinica O, Vasile E, Vekas L, Krasia-Chistoforou T (2014) Fabrication and characterization of superparamagnetic poly(vinylpyrrolidone)/poly(L-lactide)/Fe3O4 electrospun membranes. J Magn Magn Mater 352:30–35

    CAS  Article  Google Scholar 

  5. Kidkhunthod P, Nilmoung S, Mahakot S, Rodporn S, Phumying S, Maensiri S (2016) A structural study and magnetic properties of electrospun carbon/manganese ferrite (C/MnFe2O4) composite nanofibers. J Magn Magn Mater 401:436–442

    CAS  Article  Google Scholar 

  6. Lee HJ, Lee SJ, Uthaman S, Thomas RG, Hyun H, Jeong YY, Cho CS, Park IK (2015) Biomedical applications of magnetically functionalized organic/inorganic hybrid nanofibres. Int J Mol Sci 16:13661–13677

    CAS  Article  Google Scholar 

  7. Zhong Y, Leung V, Wan LY, Dutz S, Ko FK, Häfeli UO (2015) Electrospun magnetic nanofibre mats – a new bondable biomaterial using remotely activated magnetic heating. J Magn Magn Mater 380:330–334

    CAS  Article  Google Scholar 

  8. Tong HW, Wang M, Li ZY, Lu WW (2010) Electrospinning, characterization and in vitro biological evaluation of nanocomposite fibers containing carbonated hydroxyapatite nanoparticles. Biomed Mater 5:054111 (13 pp), 054111

    Article  Google Scholar 

  9. Kim CA, Choi HJ, Kim CB, Jhon MS (1998) Drag reduction characteristics of polysaccharide xanthan gum. Macromol Rapid Commun 19:419–422

    CAS  Article  Google Scholar 

  10. Sawawi M, Wang TY, Nisbet DR, Simon GP (2013) Scission of electrospun polymer fibres by ultrasonication. Polymer 54:4237–4252

    CAS  Article  Google Scholar 

  11. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272

    CAS  Article  Google Scholar 

  12. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621

    CAS  Article  Google Scholar 

  13. Oh JS, Choi SB (2017) State of the art of medical devices featuring smart electro-rheological and magneto-rheological fluids. J King Saud Univ Sci 29:390–400

    Article  Google Scholar 

  14. Felicia LJ, Vinod S, Philip J (2016) Resent advances in magnetorheology of ferrofluids (magnetic nanofluids)-a critical review. J Nanofluids 5:1–22

    Article  Google Scholar 

  15. Fang FF, Liu YD, Choi HJ (2013) Electrorheological and magnetorheological response of polypyrrole/magnetite nanocomposite particles. Colloid Polym Sci 291:1781–1786

    CAS  Article  Google Scholar 

  16. Peer P, Filip P, Polaskova M, Kucharczyk P, Pavlinek V (2016) The influence of sonication of poly(ethylene oxide) solutions to the quality of resulting electrospun nanofibrous mats. Polym Degrad Stabil 126:101–106

    CAS  Article  Google Scholar 

  17. Sedlacik M, Moucka R, Kozakova Z, Kazantseva NE, Pavlinek V, Kuritka I, Kaman O, Peer P (2013) Correlation of structural and magnetic properties of Fe3O4 nanoparticles with their calorimetric and magnetorheological performance. J Magn Magn Mater 326:7–13

    CAS  Article  Google Scholar 

  18. Peer P, Stenicka M, Pavlinek V, Filip P (2014) The storage stability of polyvinylbutyral solutions from an electrospinnability standpoint. Polym Degrad Stabil 105:134–139

    CAS  Article  Google Scholar 

  19. Qin XH, Yang EL, Li N, Wang SY (2007) Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution. J Appl Polym Sci 103:3865–3870

    CAS  Article  Google Scholar 

  20. Arayanarakul K, Choktaweesap N, Aht-ong D, Meechaisue C, Suppaphol S (2006) Effect of poly(ethylene glycol), inorganic salt, sodium dodecyl sulphate, and solvent system on electrospinning of poly(ethyle oxide). Macromol Mater Eng 291:581–591

    CAS  Article  Google Scholar 

  21. Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer 45:3372–3384

    Article  Google Scholar 

  22. Yu JH, Fridrikh SV, Rutledge GC (2006) The role of elasticity in the formation of electrospun fibers. Polymer 47:4789–4797

    CAS  Article  Google Scholar 

  23. Park BJ, Fang FF, Choi HJ (2010) Magnetorheology: materials and application. Soft Matter 6:5246–5253

    CAS  Article  Google Scholar 

  24. Gao CY, Kim MW, Bae DH, Dong YZ, Piao SH, Choi HJ (2017) Fe3O4 nanoparticle-embedded polystyrene composite particles fabricated via a Shirasu porous glass membrane technique and their magnetorheology. Polymer 125:21–29

    CAS  Article  Google Scholar 

  25. McKee MG, Wilkes GL, Colby RH, Long TM (2004) Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37:1760–1767

    CAS  Article  Google Scholar 

  26. Jun Z, Hou HQ, Wendorff JH, Greiner A (2005) Poly(vinyl alcohol) nanofibres by electrospinning: influence of molecular weight on fibre shape. E-Polymers:037

  27. Rosic R, Pelipenko J, Kocbek P, Baumgartner S, Bester-Rogac M, Kristl J (2012) The role of rheology of polymer solutions in predicting nanofibre formation by electrospinning. Eur Polym J 48:1374–1384

    CAS  Article  Google Scholar 

  28. Dunlop DJ (1973) Superparamagnetic and single-domain threshold sizes in magnetite. J Geophys Res 78:1780–1793

    Article  Google Scholar 

  29. Smolkova IS, Kazantseva NE, Parmar H, Babayan V, Smolka P, Saha P (2015) Correlation between coprecipitation reaction course and magneto-structural properties of iron oxide nanoparticles. Mater Chem Phys 155:178–190

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors P.P. and P.F. wish to express their gratitude for the institutional support they received (RVO 67985874). The authors M.S. and V.B. thank the Ministry of Education, Youth and Sports of the Czech Republic for the backing given under Program NPU I (LO1504). The author N.P. also is grateful to the Ministry of Education, Youth and Sports of the Czech Republic for its grant under the project m-IPMinfra (CZ.02.1.01/0.0/0.0/16_013/0001823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Peer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peer, P., Stenicka, M., Filip, P. et al. Magnetorheological characterization and electrospinnability of ultrasound-treated polymer solutions containing magnetic nanoparticles. Colloid Polym Sci 296, 1849–1855 (2018). https://doi.org/10.1007/s00396-018-4411-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4411-y

Keywords

  • Magnetorheological efficiency
  • Magnetic nanoparticles
  • Ultrasound treatment
  • Poly(ethylene oxide) solution
  • Electrospun nanofibres