Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Superhydrophobic EVA copolymer fibers: the impact of chemical composition on wettability and photophysical properties

  • 170 Accesses

  • 2 Citations


Fibers of poly(vinyl acetate) (PVAc) homopolymer and ethylene vinyl acetate (EVA) copolymers with varying vinyl acetate (VAc) contents between 25 and 40 wt.% have been prepared to investigate wettability and photophysical properties. At lower VAc contents, it was difficult to prepare fibers without any beads due to the presence of crystalline ethylene groups at higher concentrations. EVA copolymer composition strongly affected the wettability of fibers; all EVA copolymer fibers exhibited superhydrophobic behavior and CA values varied between 150° and 160° depending on copolymer composition while hydrophilic PVAc homopolymer fibers exhibited hydrophobic behavior with a CA of 134°. Photophysical properties of PVAc homopolymer and EVA copolymers were evaluated in terms of transmittance and emission intensity. Emission intensity and transparency of EVA copolymers were decreased with the increase of VAc contents due to its amorphous behavior.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Iotti RC, Rossi F (2005) Microscopic theory of semiconductor-based optoelectronic devices. Rep Prog Phys 68(11):2533–2571

  2. 2.

    Hamley IW (2004) Developments in block copolymer science and technology. Wiley, Hoboken

  3. 3.

    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science 279(5350):548–552

  4. 4.

    Baudis S, Heller C, Liska R, Stampfl J, Bergmeister H, Weigel G (2009) (Meth) acrylate-based photoelastomers as tailored biomaterials for artificial vascular grafts. J Polym Sci A Polym Chem 47(10):2664–2676

  5. 5.

    Kahveci MU, Acik G, Yagci Y (2012) Synthesis of block copolymers by combination of atom transfer radical polymerization and visible light-induced free radical promoted cationic polymerization. Macromol Rapid Commun 33(4):309–313

  6. 6.

    Acik G, Kahveci MU, Yagci Y (2010) Synthesis of block copolymers by combination of atom transfer radical polymerization and visible light radical photopolymerization methods. Macromolecules 43(21):9198–9201

  7. 7.

    Acik G, Sey E, Tasdelen MA (2018) Polypropylene-based graft copolymers via CuAAC click chemistry. Express Polym Lett 12:418–428

  8. 8.

    Balsara NP, Park MJ (2006) Block copolymers and nanotechnology. J Polym Sci B Polym Phys 44(24):3429–3430

  9. 9.

    Balsara NP, Hahn H (2003) Block copolymers in nanotechnology. World Scientific Publishing, Hackensack

  10. 10.

    Pitto-Barry A, Barry NP (2014) Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym Chem 5(10):3291–3297

  11. 11.

    Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82(2):189–212

  12. 12.

    Jenekhe SA, Chen XL (1998) Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science 279(5358):1903–1907

  13. 13.

    Gilby G (1982) Developments in rubber technology-3. Applied Science: 101

  14. 14.

    Tang Y, Hu Y, Wang S, Gui Z, Chen Z, Fan W (2002) Preparation and flammability of ethylene-vinyl acetate copolymer/montmorillonite nanocomposites. Polym Degrad Stab 78(3):555–559

  15. 15.

    Cavaliere M, Diani E, Vitalini Sacconi L (1993) Polymer modified bitumens for improved road application. Eurobitume Congress, 5th, 1993, Stockholm, Sweden

  16. 16.

    Loeber L, Durand A, Muller G, Morel J, Sutton O, Bargiacchi M (1996) New investigations on the mechanism of polymer-bitumen interaction and their practical application for binder formulation. Eurasphalt & Eurobitume Congress, Strasbourg, 7–10 May 1996. vol 2. Paper E&E. 5.115

  17. 17.

    Riva A, Camino G, Fomperie L, Amigouet P (2003) Fire retardant mechanism in intumescent ethylene vinyl acetate compositions. Polym Degrad Stab 82(2):341–346

  18. 18.

    Allen NS, Edge M, Rodriguez M, Liauw CM, Fontan E (2000) Aspects of the thermal oxidation of ethylene vinyl acetate copolymer. Polym Degrad Stab 68(3):363–371

  19. 19.

    Liang HW, Guan QF, Chen LF, Zhu Z, Zhang WJ, Yu SH (2012) Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew Chem Int Ed 51(21):5101–5105

  20. 20.

    Zelenski CM, Dorhout PK (1998) Template synthesis of near-monodisperse1 microscale nanofibers and nanotubules of MoS2. J Am Chem Soc 120(4):734–742

  21. 21.

    Xing X, Wang Y, Li B (2008) Nanofiber drawing and nanodevice assembly in poly (trimethylene terephthalate). Opt Express 16(14):10815–10822

  22. 22.

    Suzuki A, Aoki K (2008) Biodegradable poly (l-lactic acid) nanofiber prepared by a carbon dioxide laser supersonic drawing. Eur Polym J 44(8):2499–2505

  23. 23.

    Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. science 294(5547):1684–1688

  24. 24.

    Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178

  25. 25.

    Van de Witte P, Dijkstra PJ, Van den Berg J, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117(1–2):1–31

  26. 26.

    Liu X, Ma PX (2009) Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30(25):4094–4103

  27. 27.

    Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425

  28. 28.

    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703

  29. 29.

    Choi J-K, Hwang I-S, Kim S-J, Park J-S, Park S-S, Jeong U, Kang YC, Lee J-H (2010) Design of selective gas sensors using electrospun Pd-doped SnO 2 hollow nanofibers. Sensors Actuators B Chem 150(1):191–199

  30. 30.

    Ding B, Wang M, Yu J, Sun G (2009) Gas sensors based on electrospun nanofibers. Sensors 9(3):1609–1624

  31. 31.

    Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281(1):581–586

  32. 32.

    Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102(2):1285–1290

  33. 33.

    Camposeo A, Persano L, Pisignano D (2013) Light-emitting electrospun nanofibers for nanophotonics and optoelectronics. Macromol Mater Eng 298(5):487–503

  34. 34.

    Chuangchote S, Srikhirin T, Supaphol P (2007) Color change of electrospun polystyrene/MEH-PPV fibers from orange to yellow through partial decomposition of MEH side groups. Macromol Rapid Commun 28(5):651–659

  35. 35.

    Deitzel JM, Kleinmeyer J, Harris D, Tan NB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272

  36. 36.

    Lee S, Obendorf SK (2007) Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Text Res J 77(9):696–702

  37. 37.

    Lee KY, Jeong L, Kang YO, Lee SJ, Park WH (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61(12):1020–1032

  38. 38.

    Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL (2009) Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev 61(12):1007–1019

  39. 39.

    Boudriot U, Dersch R, Greiner A, Wendorff JH (2006) Electrospinning approaches toward scaffold engineering—a brief overview. Artif Organs 30(10):785–792

  40. 40.

    Xie J, Wang C-H (2006) Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm Res 23(8):1817–1826

  41. 41.

    Taylor SG (1969) Electrically driven jets. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Roy Soc 313(1515):453–475

  42. 42.

    Li Y, Zhang Y, Yang D, Feng C, Zhai S, Hu J, Lu G, Huang X (2009) Well-defined amphiphilic graft copolymer consisting of hydrophilic poly (acrylic acid) backbone and hydrophobic poly (vinyl acetate) side chains. J Polym Sci A Polym Chem 47(22):6032–6043

  43. 43.

    Karacan I, Erdogan G (2012) The influence of thermal stabilization stage on the molecular structure of polyacrylonitrile fibers prior to the carbonization stage. Fibers and Polymers 13(3):295–302

  44. 44.

    Tasdelen M, Acik G, Yildiran S, Kok G, Salman Y (2017) Synthesis and characterization of sugar-based methacrylates and their random copolymers by ATRP. Express Polym Lett 11(10)

  45. 45.

    Allan JM, Mumin MA, Wood JA, Xu WZ, Wu W, Charpentier PA (2014) Silica aerogel–poly (ethylene-co-vinyl acetate) composite for transparent heat retention films. J Polym Sci B Polym Phys 52(14):927–935

  46. 46.

    Sadeghi M, Khanbabaei G, Dehaghani AHS, Sadeghi M, Aravand MA, Akbarzade M, Khatti S (2008) Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes. J Membr Sci 322(2):423–428

  47. 47.

    Yuan X, Zhang Y, Dong C, Sheng J (2004) Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int 53(11):1704–1710

  48. 48.

    Koski A, Yim K, Shivkumar S (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 58(3–4):493–497

  49. 49.

    Wang C, Hsu C-H, Lin J-H (2006) Scaling laws in electrospinning of polystyrene solutions. Macromolecules 39(22):7662–7672

  50. 50.

    Cengiz U, Avci MZ, Erbil HY, Sarac AS (2012) Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning. Appl Surf Sci 258(15):5815–5821

  51. 51.

    Doganci M, Cansoy C, Ucar I, Erbil H, Mielczarski E, Mielczarski J (2012) Combined XPS and contact angle studies of flat and rough ethylene-vinyl acetate copolymer films. J Appl Polym Sci 124(3):2100–2109

  52. 52.

    Ucar I, Doganci M, Cansoy C, Erbil H, Avramova I, Suzer S (2011) Combined XPS and contact angle studies of ethylene vinyl acetate and polyvinyl acetate blends. Appl Surf Sci 257(22):9587–9594

  53. 53.

    Cengiz U, Erbil HY (2014) Superhydrophobic perfluoropolymer surfaces having heterogeneous roughness created by dip-coating from solutions containing a nonsolvent. Appl Surf Sci 292:591–597

  54. 54.

    Cengiz U, Cansoy CE (2016) The effect of pattern sizes on oleophobicity and superhydrophobicity of micropatterned surfaces. Progress in Organic Coatings 101:530–536

  55. 55.

    Czanderna A, Pern F (1996) Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: a critical review. Sol Energy Mater Sol Cells 43(2):101–181

  56. 56.

    Rodriguez-Vazquez M, Liauw CM, Allen NS, Edge M, Fontan E (2006) Degradation and stabilisation of poly (ethylene-stat-vinyl acetate): 1–spectroscopic and rheological examination of thermal and thermo-oxidative degradation mechanisms. Polym Degrad Stab 91(1):154–164

  57. 57.

    Hsiao T-S, Huang P-C, Lin L-Y, Yang D-J, Hong J-L (2015) Crystallization-promoted emission enhancement of poly (l-lactide) containing a fluorescent salicylideneazine center with aggregation-enhanced emission properties. Polym Chem 6(12):2264–2273

Download references


This research did not receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Author information

Correspondence to C. Elif Cansoy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acik, G., Kamaci, M. & Cansoy, C.E. Superhydrophobic EVA copolymer fibers: the impact of chemical composition on wettability and photophysical properties. Colloid Polym Sci 296, 1759–1766 (2018). https://doi.org/10.1007/s00396-018-4395-7

Download citation


  • VAc fibers
  • EVA fibers
  • Wettability
  • Contact angle
  • Photophysical properties