Skip to main content
Log in

Temperature dependent elastic repulsion of colloidal nanoparticles with a polymer adsorption layer

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The model of pairwise elastic repulsion of contacting colloidal nanoparticles with a rigid core and deformable shell is discussed. A simple analytical equation is applied for the energy of elastic repulsion of nanoparticles with arbitrary sizes and the elasticity moduli of self-healing polymer adsorption layers. The model is based on the representation of the absorption layer as a continuous medium that is elastically deformed upon the contact of nanoparticles. The major characteristic of this medium is the elasticity modulus. The magnitude of the elasticity modulus is determined from the condition of balance of the van der Waals attractive forces of nanoparticles and the elastic repulsion of their adsorption layers in the contact area, taking into account the temperature variations. We employed the kinetic approach to describe the dependence of the elasticity modulus on both the temperature and the rate of its change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tadros T (2017) Suspension concentrates: preparation, stability and industrial applications. De Gruyter Textbook, De Gruyter. https://books.google.ru/books?id=9R29DgAAQBAJ

  2. Rzoska SJ, Starzonek S, Rzoska AD (2016) Advances in colloid science. In: Rahman MM, Asiri AM (eds) InTech, chap 12. Rijeka. https://doi.org/10.5772/64910

  3. Adiseshaiah P, Clogston J, Mcleland C, Rodriguez J, Potter A, Neun B, Skoczen S, Shanmugavelandy SS, Kester M, Stern S, McNeil SE (2013) Cancer Lett 337(2):254–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barth BM, Shanmugavelandy SS, Kaiser JM, McGovern C, Haakenson JK, Hengst JA, Gilius EL, Knupp SA, Fox TE, Smith JP, Ritty TM, Adair JH, Kester M (2013) ACS Nano 7(3):2132. https://doi.org/10.1021/nn304862b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Casals E, Gusta MF, Cobaleda-Siles M, Garcia-Sanz A, Puntes VF (2017) Cancer Nanotechnol 8(1):7. https://doi.org/10.1186/s12645-017-0030-4

    Article  PubMed  PubMed Central  Google Scholar 

  6. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Gros MAL, Larabell CA, Alivisatos AP (2003) Nanotechnology 14(7):R15. http://stacks.iop.org/0957-4484/14/i=7/a=201

    Article  CAS  Google Scholar 

  7. Wang J, Blau WJ (2009) J Opt A Pure Appl Opt 11(2):024001. https://doi.org/10.1088/1464-4258/11/2/024001

    Article  CAS  Google Scholar 

  8. Sun YP, Riggs JE, Henbest KB, Martin RB (2000) J Nonlinear Opt Phys Mater 9(4):481. https://doi.org/10.1142/s0218863500000315

    Article  CAS  Google Scholar 

  9. Irimpan L, Nampoori VPN, Radhakrishnan P, Krishnan B, Deepthy A (2008) J Appl Phys 103 (3):033105. https://doi.org/10.1063/1.2838178

    Article  CAS  Google Scholar 

  10. Board N (2003) The complete technology book on printing inks. Asia Pacific Business Press. https://books.google.ru/books?id=apZgCwAAQBAJ

  11. Guo D, Xie G, Luo J (2014) J Phys D Appl Phys 47(1):013001. http://stacks.iop.org/0022-3727/47/i=1/a=013001

    Article  CAS  Google Scholar 

  12. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  13. Deryagin BV (1989) Theory of stability of colloids and thin films. Consultants Bureau, New York

    Google Scholar 

  14. Israelachvili JN (1992) Intermolecular and surface forces: with applications to colloidal and biological systems. Academic Press, London

    Google Scholar 

  15. Pletsch H (2015) Design of elastic nanocomposite materials from polymers and noble metal nanoparticles. Ph.D. thesis, Bayreuth. https://epub.uni-bayreuth.de/3184/

  16. Harton SE, Kumar SK, Yang H, Koga T, Hicks K, Lee H, Mijovic J, Liu M, Vallery RS, Gidley DW (2010) Macromolecules 43(7):3415. https://doi.org/10.1021/ma902484d

    Article  CAS  Google Scholar 

  17. Goodwin DJ, Sepassi S, King SM, Holland SJ, Martini LG, Lawrence MJ (2013) Mol Pharm 10(11):4146. https://doi.org/10.1021/mp400138e

    Article  CAS  PubMed  Google Scholar 

  18. Griffin PJ, Bocharova V, Middleton LR, Composto RJ, Clarke N, Schweizer KS, Winey KI (2016) ACS Macro Lett 5(10):1141. https://doi.org/10.1021/acsmacrolett.6b00649

    Article  CAS  Google Scholar 

  19. Karpov SV, Slabko VV (2003) Optical and photophysical properties of fractal-structured metal sols. Russian Academy of Sciences, Siberian Branch, Novosibirsk

    Google Scholar 

  20. Karpov SV, Kodirov MK, Ryasiyanskiy AI, Slabko VV (2001) Quantum Electron 31(10):904

    Article  CAS  Google Scholar 

  21. Ershov AE, Isaev IL, Semina PN, Markel VA, Karpov SV (2012) Phys Rev B 85:045421

    Article  CAS  Google Scholar 

  22. Karpov SV, Isaev IL, Gavrilyuk AP, Gerasimov VS, G.A. S. (2009) Colloid Journal 71(3):314

    Google Scholar 

  23. Werner D, Hashimoto S, Uwada T (2010) Langmuir 26(12):9956. https://doi.org/10.1021/la100015t

    Article  CAS  PubMed  Google Scholar 

  24. Safonov VP, Shalaev VM, Markel VA, Danilova YE, Lepeshkin NN, Kim W, Rautian SG, Armstrong RL (1998) Phys Rev Lett 80(5):1102

    Article  CAS  Google Scholar 

  25. Drachev VP, Perminov SV, Rautian SG, Safonov VP (2002) . In: Topics in applied physics. Springer, Berlin, pp 115–148. https://doi.org/10.1007/3-540-44948-5_6

  26. Lepeshkin NN (2001) Optical properties of metal-dielectric composites. Ph.D. thesis, New Mexico State University

  27. Drachev VP, Bragg DW, Podolskiy VA, Safonov VP, Kim WT, Ying ZC, Armstrong RL, Shalaev VM (2001) JOSA B 18(12):1896

    Article  CAS  Google Scholar 

  28. Gavrilyuk AP, Karpov SV (2009) Appl Phys B 97:163

    Article  CAS  Google Scholar 

  29. Ershov AE, Gavrilyuk AP, Semina PN, Karpov SV, Semina PN (2014) Appl Phys B 115:547

    Article  CAS  Google Scholar 

  30. Jones A, Vincent B (1989) Colloids Surf 42:113

    Article  CAS  Google Scholar 

  31. Uttarwar RG, Potoff J, Huang Y (2013) Ind Eng Chem Res 52(1):73. https://doi.org/10.1021/ie301228f

    Article  CAS  Google Scholar 

  32. Di Michele L, Zaccone A, Eiser E (2012) Proc Nat Acad Sci 109(26):10187. http://www.pnas.org/content/109/26/10187.abstract. https://doi.org/10.1073/pnas.1202171109

    Article  PubMed  Google Scholar 

  33. Vincent B, Edwards J, Emmett S, Jones A (1986) Colloids and Surfaces 18:261

    Article  CAS  Google Scholar 

  34. Lewis JA (2000) J Am Ceram Soc 83:2341

    Article  CAS  Google Scholar 

  35. Lu K (2008) Ceram Int 34(6):1353. http://www.sciencedirect.com/science/article/pii/S0272884207001010, https://doi.org/10.1016/j.ceramint.2007.02.016

    Article  CAS  Google Scholar 

  36. Landau L, Lifshitz E, Kosevich A, Pitaevski L (1986) Theory of Elasticity. Course of theoretical physics. Butterworth-Heinemann. https://books.google.ru/books?id=tpY-VkwCkAIC

  37. Hamaker H (1937) Physica 4(10):1058. https://doi.org/10.1016/s0031-8914(37)80203-7

    Article  CAS  Google Scholar 

  38. Sonntag H, Strenge K (1970) Koagulation und stabilitat-disperser systeme. VEB Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  39. Karpov SV, Slabko VV, Chiganova GA (2002) Colloid J 64(4):425

    Article  CAS  Google Scholar 

  40. Pankratova MN, Izmailova VN (1976) Colloid J USSR 38:446

    Google Scholar 

  41. Bartenev GM, Frenkel S (1990) Physics of polymers. Khimia, Leningrad

    Google Scholar 

  42. Dill E (2011) The finite element method for mechanics of solids with ANSYS applications advances in engineering series. CRC press

  43. Izmailova VN, Yampolskaya GP, Summ BD (1988) Surface phenomena in protein systems. Khimia, Moscow

    Google Scholar 

  44. Bartenev GM, Zelenev UV (1983) Physics and mechanics of Polymers. Visshaya Shkola, Moscow

    Google Scholar 

  45. Regel VR, Slutsker AI, Tomashevskii EE (1972) Phys Usp 15(1):45. https://ufn.ru/en/articles/1972/1/c/, https://doi.org/10.1070/PU1972v015n01ABEH004945

    Article  Google Scholar 

  46. Kausch von Schmeling HH, Moghe SR, Hsiao CC (1967) J Appl Phys 38(1):201. https://doi.org/10.1063/1.1708955

    Article  Google Scholar 

  47. Rehage G (1974) Pure Appl Chem 39(1-2):161. https://doi.org/10.1351/pac197439010161

    Article  CAS  Google Scholar 

  48. Frenkel J (1955) Kinetic theory of liquids. Dover Publications, Dover. https://books.google.ru/books?id=ORdSQwAACAAJ

    Google Scholar 

  49. Tager AA (1978) Physical chemistry of polymers. MIR Publishers, Moscow

    Google Scholar 

Download references

Funding

The reported research was funded by the Russian Foundation for Basic Research, the government of the Krasnoyarsk territory and Krasnoyarsk Regional Fund of Science, grant 18-42-243023, the RF Ministry of Science and Education, the State contract with Siberian Federal University for scientific research in 2017–2019, and SB RAS Program No II.2P (0358-2015-0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly P. Gavrilyuk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilyuk, A.P., Gerasimov, V.S., Ershov, A.E. et al. Temperature dependent elastic repulsion of colloidal nanoparticles with a polymer adsorption layer. Colloid Polym Sci 296, 1689–1697 (2018). https://doi.org/10.1007/s00396-018-4383-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4383-y

Keywords

Navigation