Skip to main content

Advertisement

Log in

Click functionalization of thin films fabricated by roll-to-roll printing of thermoplastic/thermoset core-shell colloids

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A general methodology for producing ca. 140-nm thermoplastic/thermoset, core-shell colloids that are used as an ink in roll-to-roll printing is demonstrated. The printed films are subsequently modified in-line through a dip-click approach using the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The thermoplastic nature of the shell polymers in the particles allows the shell to delaminate when annealed above its glass transition temperature. This results in a printed film that is more robust and functional as it combines the durability of the thermoset core colloids and the flexibility of the thermoplastic shell polymers. The technique is demonstrated using core-shell particles with a crosslinked polystyrene core and co-/terpolymer shell that contains terminal alkynes for click functionalization. The core-shell particles were roll-to-roll printed and then annealed at 100 C to yield coalesced films. The printed films were dipped in a solution containing an azide-modified fluorescein dye which resulted in the covalent attachment of the dye to the thin films via CuAAC. When the click reaction was allowed to proceed for 24 h, it was found that ca. 67% of the total functionalization occurred in the first hour. Due to the efficiency of this technique, the potential for large-scale production of printed films where an in-line chemical modification via CuAAC could be realized.

A general methodology for producing ca. 140 nm thermoplastic/thermoset, core-shell colloids that can be used as an ink in roll-to-roll printing is demonstrated. The printed films are subsequently modified inline through a dip-click approach using the copper(I)- catalyzed azide-alkyne cycloaddition (CuAAC). The thermoplastic nature of the shell polymers in the particles allows the shell to delaminate when annealed above its glass transition temperature. This results in a printed film that is more robust and functional as it combines the durability of a thermoset core colloid with the flexibility of an alkyne-functionalized thermoplastic shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sondergaard RR, Hosel M, Krebs FC (2013) Roll-to-roll fabrication of large area functional organic materials. J Polym Sci, Part B: Polym Phys 51(1):16–34

    Article  CAS  Google Scholar 

  2. Baeg KJ, Caironi M, Noh YY (2013) Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Adv Mater 25(31):4210–4244

    Article  CAS  PubMed  Google Scholar 

  3. Choi HW, Zhou TL, Singh M, Jabbour GE (2015) Recent developments and directions in printed nanomaterials. Nanoscale 7(8):3338–3355

    Article  CAS  PubMed  Google Scholar 

  4. Erothu H, Kolomanska J, Johnston P, Schumann S, Deribew D, Toolan DTW, Gregori A, Dagron-Lartigau C, Portale G, Bras W, Arnold T, Distler A, Hiorns RC, Mokarian-Tabari P, Collins TW, Howse JR, Topham PD (2015) Synthesis, thermal processing, and thin film morphology of poly(3-hexylthiophene)-poly(styrenesulfonate) block copolymers. Macromolecules 48(7):2107–2117

    Article  CAS  Google Scholar 

  5. Valimaki M, Apilo P, Po R, Jansson E, Bernardi A, Ylikunnari M, Vilkman M, Corso G, Puustinen J, Tuominen J, Hast J (2015) R2r-printed inverted opv modules—towards arbitrary patterned designs. Nanoscale 7(21):9570–80

    Article  CAS  PubMed  Google Scholar 

  6. Grau G, Kitsomboonloha R, Swisher SL, Kang HK, Subramanian V (2014) Printed transistors on paper: towards smart consumer product packaging. Adv Funct Mater 24(32):5067–5074

    Article  CAS  Google Scholar 

  7. Larsen-Olsen TT, Andersen TR, Dam HF, Jorgensen M, Krebs FC (2015) Probing individual subcells of fully printed and coated polymer tandem solar cells using multichromatic opto-electronic characterization methods. Sol Energy Mater Sol Cells 137:154–163

    Article  CAS  Google Scholar 

  8. Huebner CF, Tsyalkovsky V, Bandera Y, Burdette MK, Shetzline JA, Tonkin C, Creager SE, Foulger SH (2015) Nonvolatile optically-erased colloidal memristors. Nanoscale 7(4):1270–1279

    Article  CAS  PubMed  Google Scholar 

  9. Hernandez-Sosa G, Bornemann N, Ringle I, Agari M, Dorsam E, Mechau N, Lemmer U (2013) Rheological and drying considerations for uniformly gravure-printed layers: towards large-area flexible organic light-emitting diodes. Adv Funct Mater 23(25):3164–3171

    Article  CAS  Google Scholar 

  10. Sandstrom A, Edman L (2015) Towards high-throughput coating and printing of light-emitting electrochemical cells: a review and cost analysis of current and future methods. Energ Technol 3(4):329–339

    Article  CAS  Google Scholar 

  11. Khan S, Lorenzelli L, Dahiya RS (2015) Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J 15(6):3164–3185

    Article  Google Scholar 

  12. Roeder RD, Rungta P, Tsyalkovskyy V, Bandera Y, Foulger SH (2012) Colloidal templating: seeded emulsion polymerization of a soluble shell with a controlled alkyne surface density. Soft Matter 8:5493–5500

    Article  CAS  Google Scholar 

  13. Zhang Y, Foos R, Landfester K, Taden A (2014) Thermoset-thermoplastic hybrid nanoparticles and composite coatings. Polymer 55(10):2305–2315

    Article  CAS  Google Scholar 

  14. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004

    Article  CAS  Google Scholar 

  15. Hein JE, Fokin VV (2010) Copper-catalyzed azide–alkyne cycloaddition (cuaac) and beyond: new reactivity of copper (i) acetylides. Chem Soc Rev 39(4):1302–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Evanoff DD, Hayes SE, Ying Y, Shim GH, Lawrence JR, Carroll JB, Roeder RD, Houchins JM, Huebner CE, Foulger SH (2007) Functionalization of crystalline colloidal arrays through click chemistry. Adv Mater 19(21):3507

    Article  CAS  Google Scholar 

  17. Haensch C, Hoeppener S, Schubert US (2008) Chemical surface reactions by click chemistry: coumarin dye modification of 11-bromoundecyltrichlorosilane monolayers. Nanotechnology 19:1–7

    Article  CAS  Google Scholar 

  18. Santos CM, Kumar A, Kolar SS, Contreras-Caceres R, McDermott A, Cai C Z (2013) Immobilization of antimicrobial peptide ig-25 onto fluoropolymers via fluorous interactions and click chemistry. ACS Appl Mater Interfaces 5(24):12789– 12793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ocepek M, Soucek MD, Berce P, Meng L (2015) Comparison of particle size techniques to investigate secondary nucleation in hema-rich latexes. Macromol Chem Phys 216(4):400–416

    Article  CAS  Google Scholar 

  20. Smith WV, Ewart RH (1948) Kinetics of emulsion polymerization. J Chem Phys 16(6):592–599

    Article  CAS  Google Scholar 

  21. Ugelstad J, El-Aasser MS, Vanderhoff JW (1973) Emulsion polymerization: initiation of polymerization in monomer droplets. J Polym Sci, Part C: Polym Lett 11(8):503–513

    CAS  Google Scholar 

  22. Ballard N, de la Cal JC, Asua JM (2015) The role of chain transfer agent in reducing branching content in radical polymerization of acrylates. Macromolecules 48(4):987–993

    Article  CAS  Google Scholar 

  23. Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5 (8):574

    Article  CAS  PubMed  Google Scholar 

  24. Krebs FC (2009) Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Sol Energy Mater Sol Cells 93(4): 465–475

    Article  CAS  Google Scholar 

  25. Krebs FC, Fyenbo J, Jørgensen M (2010) Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. J Mater Chem 20(41):8994–9001

    Article  CAS  Google Scholar 

  26. Krebs FC, Gevorgyan SA, Alstrup J (2009) A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J Mater Chem 19(30):5442–5451

    Article  CAS  Google Scholar 

  27. Se HA, Guo LJ (2008) High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv Mater 20(11):2044–2049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Sheridan College for providing funding to complete this research.

Funding

The authors thank DARPA (Grant Number N66001-04-1-8933), the National Science Foundation (DMR-0236692 and DMR-1507266) and the Gregg-Graniteville Foundation for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Foulger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roeder, R.D., Huebner, C.F., Tonkin, C. et al. Click functionalization of thin films fabricated by roll-to-roll printing of thermoplastic/thermoset core-shell colloids. Colloid Polym Sci 296, 1679–1687 (2018). https://doi.org/10.1007/s00396-018-4382-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4382-z

Keywords

Navigation