Skip to main content
Log in

Catanionic AOT/BDAC micelles on gold {111} surfaces

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A sodium dioctyl sulfosuccinate (AOT)/benzyl hexadecyl dimethyl ammonium chloride (BDAC) mixed micelle self-organization and adsorption on gold Au(111) surfaces have been investigated using a molecular dynamics approach. The spherical AOT/BDAC mixed micelle is strongly adsorbed on the gold surface and is disoriented to a cylinder-like shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marques EF, Regev O, Khan A, Miguel MG, Lindman B (1998) Vesicle formation and general phase behavior in the catanionic mixture SDS−DDAB−water. The anionic-rich side. J Phys Chem B 102:6746–6758

    Article  CAS  Google Scholar 

  2. Zemb T, Dubois M, Deme B, Gulik-Kryzwicki T (1999) Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science 283:816–819

    Article  CAS  PubMed  Google Scholar 

  3. Khan A, Marques EF (1999) Synergism and polymorphism in mixed surfactant systems. Curr Opin Colloid Interface Sci 4:402–410

    Article  CAS  Google Scholar 

  4. Villa CC, Correa NM, Silber JJ, Moyano F, Falcone RD (2015) Singularities in the physicochemical properties of spontaneous AOT-BHD unilamellar vesicles in comparison with DOPC vesicles. PhysChemChemPhys 17:17112–17121

    CAS  Google Scholar 

  5. Kaler EW, Murthy AK, Rodriguez BE, Zasadzinski JA (1989) Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 145:1371–1374

    Article  Google Scholar 

  6. Johnson CM, Badelli S (2014) Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem Rev 114:8416–8446

    Article  CAS  PubMed  Google Scholar 

  7. Silva BFB, Marques EF, Olsson U (2008) Unusual vesicle−micelle transitions in a salt-free catanionic surfactant: temperature and concentration effects. Langmuir 24:10746–10754

    Article  CAS  PubMed  Google Scholar 

  8. Silva BFB, Marques EF (2005) Thermotropic behavior of asymmetric chain length catanionic surfactants: the influence of the polar head group. J Colloid Interface Sci 290:267–274

    Article  CAS  PubMed  Google Scholar 

  9. Bergström M (1996) Thermodynamics of vesicle formation from a mixture of anionic and cationic surfactants. Langmuir 12:2454–2463

    Article  Google Scholar 

  10. Umlong IM, Ismail K (2005) Micellization of AOT in aqueous sodium chloride, sodium acetate, sodium propionate, and sodium butyrate media: a case of two different concentration regions of counterion binding. J Colloid Interface Sci 291:529–536

    Article  CAS  PubMed  Google Scholar 

  11. Dey J, Bhattacharjee J, Hassan PA, Aswal VK, Das D, Ismail K (2010) Micellar shape driven counterion binding. Small-angle neutron scattering study of AOT micelle. Langmuir 26:15802–15806

    Article  CAS  PubMed  Google Scholar 

  12. Villa CC, Moyano F, Ceolin M, Silber JJ, Falcone RD, Correa NM (2012) A unique ionic liquid with amphiphilic properties that can form reverse micelles and spontaneous unilamellar vesicles. Chem Eur J 18:15598–15601

    Article  CAS  PubMed  Google Scholar 

  13. Falcone RD, Silber JJ, Correa NM (2009) Which are the factors that control the nonaqueous AOT reverse micelles sizes? A dynamic light scattering study. PhysChemChemPhys 11:11096–11100

    CAS  Google Scholar 

  14. Poghosyan AH, Shahinyan AA, Koetz J (2018) Self-assembled monolayer formation of distorted cylindrical AOT micelles on gold surfaces. Colloids Surf A Physicochem Eng Asp 546(5):20–27

    Article  CAS  Google Scholar 

  15. Liebig F, Sarhan RM, Prietzel C, Thünemann AF, Bargheer M, Koetz J (2018) Undulated gold nanoplatelet superstructures: in situ growth of hemispherical gold nanoparticles onto the surface of gold nanotriangles. Langmuir 34:4584–4594

    Article  CAS  PubMed  Google Scholar 

  16. Liebig F, Sarhan RM, Prietzel C, Schmitt CNZ, Bargheer M, Koetz J (2018) Tuned surface-enhanced Raman scattering performance of undulated Au@Ag triangles. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.8b00570

  17. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (eds) (1981) Intermolecular Forces. Reidel, Dordrecht

    Google Scholar 

  18. Wright LB, Rodger PM, Corni S, Walsh TR (2013) GolP-CHARMM: first-principles based force fields for the interaction of proteins with Au(111) and Au(100). J Chem Theory Comput 9(3):1616–1630

    Article  CAS  PubMed  Google Scholar 

  19. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun 91:43–56

    Article  CAS  Google Scholar 

  20. Abel S, Sterpone F, Bandyopadhyay S, Marchi M (2004) Molecular modeling and simulations of AOT-water reverse micelles in isooctane: structural and dynamic properties. J Phys Chem B 108:19458–19466

    Article  CAS  Google Scholar 

  21. Shi W, Hong L, Damodaran K, Nulwara HB, Luebke DR (2014) Molecular simulation and experimental study of CO2 adsorption in ionic liquid reverse micelle. J Phys Chem B 118(48):13870–13881

    Article  CAS  PubMed  Google Scholar 

  22. Nosé S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81(1):511–519

    Article  Google Scholar 

  23. Rahman A, Parrinello N (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7189

    Article  Google Scholar 

  24. Hess B, Bekker H, Berendsen HJC, Fraaije J (1987) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  Google Scholar 

  25. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  26. Verlet L (1967) Computer “experiments” on classical fluids: thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103

    Article  CAS  Google Scholar 

  27. Astsatryan H, Sahakyan V, Shoukourian Yu, Cros P-H, Dayde M, Dongarra J, Oster P (2015) Strengthening compute and data intensive capacities of Armenia, IEEE Proceedings of 14th RoEduNet International Conference—Networking in Education and Research (NER’2015), Craiova, Romania, pp. 28-33, September 24–26

  28. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  29. Todeschini R, Consonni V (2008) In: Handbook of chemoinformatics: from data to knowledge (4 Volumes) Johann Gasteiger (ed). WILEY-VCH, Weinheim, pp 1004–1033

  30. Nomura H, Kawaizumi F, Yarwood J (1995) Structure, fluctuation and relaxation in solutions. Elsevier, New York City, p 445

    Google Scholar 

  31. Paruchuri VK, Nalaskowski J, Shah DO, Miller JD (2006) The effect of cosurfactants on sodium dodecyl sulfate micellar structures at a graphite surface. Colloids Surf A Physicochem Eng Asp 272:157–163

    Article  CAS  Google Scholar 

  32. Liveri VT (2006) In: Lockwood DJ (ed) Controlled synthesis of nanoparticles in microheterogeneous systems: nanostructure Science and Technology. Springer Science, New York

    Google Scholar 

  33. Mancinelli R, Botti A, Bruni F, Ricci MA, Soper AK (2007) Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J Phys Chem B 111:13570–13577

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Sincere thanks to Dr. Hrachya Astsatryan for providing us with the access to the computational resources.

Funding

The research has been co-funded (A.H.Poghosyan) by the European Commission under the H2020 Research Infrastructures contract no. 675121 (project VI-SEEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Poghosyan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poghosyan, A.H., Shahinyan, A.A. & Koetz, J. Catanionic AOT/BDAC micelles on gold {111} surfaces. Colloid Polym Sci 296, 1301–1306 (2018). https://doi.org/10.1007/s00396-018-4348-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4348-1

Keywords

Navigation