Synthesis, structure, and properties of bisphenol A formaldehyde sol—precursor of low-density aerogel


Low-density organic aerogels (down to 11–12 mg/cm3) were successively synthesized by polycondensation of formaldehyde with bisphenol A (2,2-diphenylolpropane or BPhA) methylol derivatives by the thermal treatment under basic conditions. In this paper, the main features of bisphenol A-formaldehyde (BF) sol and hydrogel formation have been examined for the first time. The molecular weight distribution both of the initial resin and the soluble products of its thermal processing were studied by size exclusion chromatography. A detailed study of the structure of sols and the dynamics of its change was carried out by dynamic and static light scattering and scanning and transmission electron microscopy. The results obtained allowed to describe the process of gel formation as a diffusion-limited cluster-cluster fractal aggregation of sol nanoparticles formed during the polycondensation. Crosslinking of low-density fractal aggregates leads to the formation of a macro-porous structure with a high pore volume and, ultimately, to a low-density aerogel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Fricke J, Emmerling A (1998) Aerogels–recent progress in production techniques and novel applications. J Sol-Gel Sci Technol 13:299–303.

    Article  CAS  Google Scholar 

  2. 2.

    Akimov YK (2003) Fields of application of aerogels. Instrum Exp Tech 46:287–299.

    Article  CAS  Google Scholar 

  3. 3.

    Smirnov BM (1987) Aerogels. Sov Phys Uspekhi 30:420–432.

    Article  Google Scholar 

  4. 4.

    Orekhov AS, Akunets AA, Borisenko LA, Gromov AI, Merkuliev YA, Pimenov VG, Sheveleva EE, Vasiliev VG, Borisenko NG (2016) Modern trends in low-density materials for fusion. J Phys Conf Ser 688:012080.

    Article  CAS  Google Scholar 

  5. 5.

    Barral K (1998) Low-density organic aerogels by double-catalysed synthesis. J Non-Cryst Solids 225:46–50.

    Article  CAS  Google Scholar 

  6. 6.

    Sveс F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217:902–924.

    Article  CAS  Google Scholar 

  7. 7.

    Tikhonov VE, Blagodatskikh IV, Postnikov VA, Klemenkova ZS, Vyshivannaya OV, Khokhlov AR (2016) New approach to the synthesis of a functional macroporous poly(vinylalcohol) network and design of boronate affinity sorbent for protein separation. Eur Polym J 75:1–12.

    Article  CAS  Google Scholar 

  8. 8.

    Nischang I (2013) Porous polymer monoliths: morphology, poros properties, polymer nano-scale gel structure and their impact on chromatographic performance. J Chromatogr A 26:39–58.

    Article  CAS  Google Scholar 

  9. 9.

    Einarsrud MA, Nilsen E (1998) Strengthening of water glass and colloidal sol based silica gels by aging in TEOS. J Non-Cryst Solids 226:122–128.

    Article  CAS  Google Scholar 

  10. 10.

    Kocon L, Despetis F, Phalippou J (1998) Ultralow density silica aerogels by alcohol supercritical drying. J Non-Cryst Solids 225:96–100.

    Article  CAS  Google Scholar 

  11. 11.

    Shabanova NA, Sarkisov PD (2012) Sol-gel technologies. Nanodisperse silica. Binominal. Laboratory of Knowledge, Moscow

  12. 12.

    Durairaj RB (2005) Resorcinol. Chemistry, technology and application. Springer-Verlag, Berlin

    Google Scholar 

  13. 13.

    Mitsunaga T, Conner AH, Hill Jr CG (2002) Predicting the hydroxymethylation rate of phenols with formaldehyde by molecular orbital calculation. J Wood Sci 48:153–158.

    Article  CAS  Google Scholar 

  14. 14.

    Knop A, Louis AP, Volker B (2014) Phenolic resins: chemistry, applications and performance. Springer Science & Business Media, New York

    Google Scholar 

  15. 15.

    Kobayashi S, Itoh H (2002) Pat 6,379,862 USA

  16. 16.

    Harris TG (1982) Pat 4,357,457 USA

  17. 17.

    Nobuyuoki T, Tadao I (1980) Pat. 55-64537A Japan

    Google Scholar 

  18. 18.

    Kondratiev VP, Kondrashchenko VI (2004) Synthetic glues for wood materials. The Scientific World, Moscow

    Google Scholar 

  19. 19.

    Sheveleva EE, Pimenov VG, Pikulin IV, Sakharov AM (2016) The formation of ultralow-density microcellular diane-formaldegyde gels and aerogels. Polymer Sci Ser B 58:173–182.

    Article  CAS  Google Scholar 

  20. 20.

    Sorensen CM (2001) Light scattering by fractal aggregates: a review. Aerosol Sci Technol 35:648–687.

    Article  CAS  Google Scholar 

  21. 21.

    Bushell GC, Yan YD, Woodfield D, Raper J, Amal R (2002) On techniques for the measurement of the mass fractal dimension of aggregates. Adv Colloid Interf Sci 95:1–50.

    Article  CAS  Google Scholar 

  22. 22.

    Wu D, Fu R, Sun Z, Yu Z (2005) Low-density organic and carbon aerogels from the sol–gel polymerization of phenol with formaldehyde. J Non-Cryst Solids 351:915–921.

    Article  CAS  Google Scholar 

  23. 23.

    Ruben GC, Pekala RW, Tillotson TM, Hrubesh LW (1992) Imaging aerogels at the molecular level. J Mater Sci 27:4341–4349.

    Article  CAS  Google Scholar 

  24. 24.

    Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldegyde. J Mater Sci 24:3221–3227.

    Article  CAS  Google Scholar 

  25. 25.

    Aegerter MA, Prassas M (2011) Aerogels Handbook. Springer, New York

    Google Scholar 

  26. 26.

    Kätzel U, Vorbau M, Stintz M, Gottschalk-Gaudig T, Barthel H (2008) Dynamic light scattering for the characterization of Polydisperse fractal systems: II. Relation between structure and DLS results. Part Part Syst Charact 25:19–30.

    Article  CAS  Google Scholar 

  27. 27.

    Fernández-Nieves A, Fernández-Barbero A, de las Nieves FJ (2004) Static light scattering from fractal aggregates of microgel particles. Progr Colloid Polym Sci 123:251–254.

    Article  Google Scholar 

  28. 28.

    Zhou ZP, Wu P, Chu B (1991) Cationic surfactant induced fractal silica aggregates: a light-scattering study. J Colloid Interface Sci 146:541–555.

    Article  CAS  Google Scholar 

  29. 29.

    Freeman JH, Lewis CW (1954) Alkaline-catalyzed reaction of formaldehyde and the methylols of phenol; a kinetic study. J Am Chem Soc 76:2080–2087.

    Article  CAS  Google Scholar 

Download references


The authors are grateful to Department of Structural Research of the N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences for the study of samples by the method of electronic microscopy.


This study was performed with financial support of the Russian Science Foundation (Grant No. 14-50-00126).

Author information



Corresponding author

Correspondence to Elena Evgenievna Sheveleva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheveleva, E.E., Pimenov, V.G., Blagodatskikh, I.V. et al. Synthesis, structure, and properties of bisphenol A formaldehyde sol—precursor of low-density aerogel. Colloid Polym Sci 296, 1313–1322 (2018).

Download citation


  • Aggregation
  • Gels
  • Bisphenol A-formaldehyde sol
  • Light scattering
  • Microscopy electron
  • Nanoparticles
  • Polymer synthesis