Colloid and Polymer Science

, Volume 296, Issue 7, pp 1193–1203 | Cite as

Synthesis and studies of carbazole-based donor polymer for organic solar cell applications

  • Govindasamy SathiyanEmail author
  • Govindasamy Siva
  • E. K. T. Sivakumar
  • Jai Prakash
  • Hendrik C. SwartEmail author
  • Pachagounder SakthivelEmail author
Original Contribution


We have developed a carbazole-based electron donor material, containing extended thiophene π-conjugated through a cyanovinylene spacer in order to enhance the effective intramolecular charge transfer for bulk heterojunction polymer solar cell (BHJ-PSC) applications. The polymer was synthesized via FeCl3 oxidative polymerization method, namely poly(2E,2′E)-3,3′-(9-hexyl-9H-carbazole-3,6-diyl)bis(2-(5-methylthiophen-2yl)acrylonitrile (CN-PICTAN). The CN-PICTAN formation was confirmed by Fourier transformed infrared, nuclear magnetic resonance spectroscopy, and gel permeation chromatography techniques. The CN-PICTAN showed a broad absorption and emission range with optical band gap (Egopt) of 2.1 eV. The CN-PICTAN exhibited a high thermal stability with 5% weight loss at 356 °C and deep-lying highest occupied molecular orbital level of − 5.23 eV. The BHJ-PSC device fabricated with CN-PICTAN:PC61BM (1:1.5) showed a power conversion efficiency of 1.23%, which was enhanced to 1.73% after the device was annealed at 100 °C.


Carbazole Low band gap Organic solar cell Polymer BHJ device 



We are thankful to VIT Management for providing the laboratory facilities and VIT SIF for spectral study. The characterizations were carried out at CSIR-CECRI, Karaikudi.

Funding information

The financial support of DST for this project (Ref. SB/FT/CS-185/2011 dated 01.08.2013) and Solar Energy Research Initiative (SERI) Programme (DST/TM/SERI/FR/172(G)) is highly appreciated by the authors. The research is supported by the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation of South Africa (84415). The financial assistance from the University of the Free State is highly recognized.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4337_MOESM1_ESM.docx (760 kb)
ESM 1 (DOCX 760 kb)


  1. 1.
    Sathiyan G, Sivakumar E, Ganesamoorthy R, Thangamuthu R, Sakthivel P (2016) Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Lett 57(3):243–252CrossRefGoogle Scholar
  2. 2.
    Yoon S, Han Y, Hwang I (2018) Probing molecular orientation of P3HT nanofibers in fiber-based organic solar cells. Electron Mater Lett 14(1):46–51CrossRefGoogle Scholar
  3. 3.
    Laquai F, Andrienko D, Deibel C, Neher D (2017) In Elementary processes. In: Leo K (ed) Organic photovoltaics. Springer International Publishing, Cham, pp 267–291Google Scholar
  4. 4.
    Kim J-H, Park E-K, Kim J-H, Cho HJ, Lee D-H, Kim Y-S (2016) Improving charge transport of P3HT:PCBM organic solar cell using MoO3 nanoparticles as an interfacial buffer layer. Electron Mater Lett 12(3):383–387CrossRefGoogle Scholar
  5. 5.
    Ahn HJ, Thogiti S, Cho JM, Jang BY, Kim JH (2015) Comparison of triphenylamine based single and double branched organic dyes in dye-sensitized solar cells. Electron Mater Lett 11(5):822–827CrossRefGoogle Scholar
  6. 6.
    Fathi M, Mefoued A, Messaoud A, Boukennous Y (2009) Cost-effective photovoltaics with silicon material. Phys Procedia 2(3):751–757CrossRefGoogle Scholar
  7. 7.
    Pochettino A, Sella A (1906). Acad Lincei Rend 15:355–363Google Scholar
  8. 8.
    Tang CW (1986) Two‐layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185CrossRefGoogle Scholar
  9. 9.
    Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41(11):4245–4272CrossRefPubMedGoogle Scholar
  10. 10.
    Sakthivel P, Kranthiraja K, Saravanan C, Gunasekar K, Kim HI, Shin WS, Jeong J-E, Woo HY, Jin S-H (2014) Carbazole linked phenylquinoline-based fullerene derivatives as acceptors for bulk heterojunction polymer solar cells: effect of interfacial contacts on device performance. J Mater Chem A 2(19):6916–6921CrossRefGoogle Scholar
  11. 11.
    Sakthivel P, Song HS, Chakravarthi N, Lee JW, Gal Y-S, Hwang S, Jin S-H (2013) Synthesis and characterization of new indeno[1,2-b]indole-co-benzothiadiazole-based π-conjugated ladder type polymers for bulk heterojunction polymer solar cells. Polymer 54(18):4883–4893CrossRefGoogle Scholar
  12. 12.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15(10):1617–1622CrossRefGoogle Scholar
  13. 13.
    Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109(11):5868–5923CrossRefPubMedGoogle Scholar
  14. 14.
    Kroon R, Lenes M, Hummelen JC, Blom PW, De Boer B (2008) Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym Rev 48(3):531–582CrossRefGoogle Scholar
  15. 15.
    Benten H, Mori D, Ohkita H, Ito S (2016) Recent research progress of polymer donor/polymer acceptor blend solar cells. J Mater Chem A 4(15):5340–5365CrossRefGoogle Scholar
  16. 16.
    Lee JW, Bae S, Jo WH (2014) Synthesis of 6H-benzo[c]chromene as a new electron-rich building block of conjugated alternating copolymers and its application to polymer solar cells. J Mater Chem A 2(34):14146–14153CrossRefGoogle Scholar
  17. 17.
    Zhang Z-G, Wang J (2012) Structures and properties of conjugated donor–acceptor copolymers for solar cell applications. J Mater Chem 22(10):4178–4187CrossRefGoogle Scholar
  18. 18.
    Hwang D-H, Lee J-D, Kang J-M, Lee S, Lee C-H, Jin S-H (2003) Syntheses and light-emitting properties of poly(9,9-di-n-octylfluorenyl-2,7-vinylene) and PPV copolymers. J Mater Chem 13(7):1540–1545CrossRefGoogle Scholar
  19. 19.
    Motaung DE, Malgas GF, Arendse CJ (2011) Insights into the stability and thermal degradation of P3HT:C60 blended films for solar cell applications. J Mater Sci 46(14):4942–4952CrossRefGoogle Scholar
  20. 20.
    Sathiyan G, Thangamuthu R, Sakthivel P (2016) Synthesis of carbazole-based copolymers containing carbazole-thiazolo[5,4-d]thiazole groups with different dopants and their fluorescence and electrical conductivity applications. RSC Adv 6(73):69196–69205CrossRefGoogle Scholar
  21. 21.
    Alem S, Chu T-Y, Shing CT, Wakim S, Lu J, Movileanu R, Tao Y, Bélanger F, Désilets D, Beaupré S (2011) Effect of mixed solvents on PCDTBT:PC70BM based solar cells. Org Electron 12(11):1788–1793CrossRefGoogle Scholar
  22. 22.
    Zhang Z-B, Fujiki M, Tang H-Z, Motonaga M, Torimitsu K (2002) The first high molecular weight poly(N-alkyl-3,6-carbazole)s. Macromolecules 35(6):1988–1990CrossRefGoogle Scholar
  23. 23.
    Neef C, Ferraris J (2000) MEH-PPV: improved synthetic procedure and molecular weight control. Macromolecules 33(7):2311–2314CrossRefGoogle Scholar
  24. 24.
    Kang TE, Kim T, Wang C, Yoo S, Kim BJ (2015) Poly(benzodithiophene) homopolymer for high-performance polymer solar cells with open-circuit voltage of near 1 V: a superior candidate to substitute for poly(3-hexylthiophene) as wide bandgap polymer. Chem Mater 27(7):2653–2658CrossRefGoogle Scholar
  25. 25.
    Ramkumar S, Manoharan S, Anandan S (2012) Synthesis of D-(π-A)2 organic chromophores for dye-sensitized solar cells. Dyes Pigments 94(3):503–511CrossRefGoogle Scholar
  26. 26.
    Ramkumar S, Anandan S (2013) Synthesis of bianchored metal free organic dyes for dye sensitized solar cells. Dyes Pigments 97(3):397–404CrossRefGoogle Scholar
  27. 27.
    Sharma G, Patel K, Roy M, Misra R (2014) Characterization of two new (A–π)2–D–A type dyes with different central D unit and their application for dye sensitized solar cells. Org Electron 15(8):1780–1790CrossRefGoogle Scholar
  28. 28.
    Singh M, Kurchania R, Mikroyannidis J, Sharma S, Sharma G (2013) An A–D–A small molecule based on the 3,6-dithienylcarbazole electron donor (D) unit and nitrophenyl acrylonitrileelectron acceptor (A) units for solution processed organic solar cells. J Mater Chem A 1(6):2297–2306CrossRefGoogle Scholar
  29. 29.
    Mikroyannidis JA, Sharma S, Vijay Y, Sharma G (2009). ACS Appl Mater Interfaces 2(1):270–278CrossRefGoogle Scholar
  30. 30.
    Thompson BC, Kim Y-G, McCarley TD, Reynolds JR (2006) Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications. J Am Chem Soc 128(39):12714–12725CrossRefPubMedGoogle Scholar
  31. 31.
    Thompson BC, Kim Y-G, Reynolds JR (2005) Spectral broadening in MEH-PPV:PCBM-based photovoltaic devices via blending with a narrow band gap cyanovinylene−dioxythiophene polymer. Macromolecules 38(13):5359–5362CrossRefGoogle Scholar
  32. 32.
    Ryu HW, Kim YS, Kim JH, Cheong IW (2014) Direct synthetic route for water-dispersible polythiophene nanoparticles via surfactant-free oxidative polymerization. Polymer 55(3):806–812CrossRefGoogle Scholar
  33. 33.
    Cai T, Zhou Y, Wang E, Hellström S, Zhang F, Xu S, Inganäs O, Andersson MR (2010) Low bandgap polymers synthesized by FeCl3 oxidative polymerization. Sol Energy Mater Sol Cells 94(7):1275–1281CrossRefGoogle Scholar
  34. 34.
    Aydın A, Kaya İ (2013). Org Electron 14(3):730–743CrossRefGoogle Scholar
  35. 35.
    Park T-J, Kim YS, Kan E, Lee SH (2015) Influence of ionic liquids as solvents for the chemical synthesis of poly(3-octylthiophene) with FeCl3. RSC Adv 5(32):25590–25593CrossRefGoogle Scholar
  36. 36.
    Hassanien R, Almaky MM, Houlton A, Horrocks BR (2016) Preparation and electrical properties of a copper-conductive polymer hybrid nanostructure. RSC Adv 6(101):99422–99432CrossRefGoogle Scholar
  37. 37.
    Hai TAP, Sugimoto R (2016) Synthesis and characterization of copolymers composed of 3-hexylthiophene and fluorene via chemical oxidation with FeCl3. Polym J 48(12):1115–1121CrossRefGoogle Scholar
  38. 38.
    Tsuchiya K, Ogino K (2013) Catalytic oxidative polymerization of thiophene derivatives. Polym J 45(3):281–286CrossRefGoogle Scholar
  39. 39.
    Ghosh S, Kouame NA, Remita S, Ramos L, Goubard F, Aubert P-H, Dazzi A, Deniset-Besseau A, Remita H (2015) Visible-light active conducting polymer nanostructures with superior photocatalytic activity. Sci Rep 5.
  40. 40.
    Colladet K, Fourier S, Cleij TJ, Lutsen L, Gelan J, Vanderzande D, Huong Nguyen L, Neugebauer H, Sariciftci S, Aguirre A (2007) Low band gap donor−acceptor conjugated polymers toward organic solar cells applications. Macromolecules 40(1):65–72CrossRefGoogle Scholar
  41. 41.
    Morin J-F, Leclerc M (2002) 2,7-Carbazole-based conjugated polymers for blue, green, and red light emission. Macromolecules 35(22):8413–8417CrossRefGoogle Scholar
  42. 42.
    Tsai J-H, Chueh C-C, Lai M-H, Wang C-F, Chen W-C, Ko B-T, Ting C (2009) Synthesis of new indolocarbazole-acceptor alternating conjugated copolymers and their applications to thin film transistors and photovoltaic cells. Macromolecules 42(6):1897–1905CrossRefGoogle Scholar
  43. 43.
    Sakthivel P, Ban TW, Kim S, Kim S, Gal Y-S, Chae EA, Shin WS, Moon S-J, Lee J-C, Jin S-H (2013) Synthesis and studies of methyl ester substituted thieno-o-quinodimethane fullerene multiadducts for polymer solar cells. Sol Energy Mater Sol Cells 113:13–19CrossRefGoogle Scholar
  44. 44.
    Pham HD, Hu H, Feron K, Manzhos S, Wang H, Lam YM, Sonar P (2017). Solar RRL 1(8)Google Scholar
  45. 45.
    Choi H, Park S, Kang M-S, Ko J (2015) Efficient, symmetric oligomer hole transporting materials with different cores for high performance perovskite solar cells. Chem Commun 51(85):15506–15509CrossRefGoogle Scholar
  46. 46.
    Panicker JS, Balan B, Soman S, Ghosh T, Nair VC (2016) Thiophene-bithiazole based metal-free dye as DSSC sensitizer: effect of co-adsorbents on photovoltaic efficiency. J Chem Sci 128(1):101–110CrossRefGoogle Scholar
  47. 47.
    Giribabu L, Kumar CV, Reddy PY, Yum J-H, Grätzel M, Nazeeruddin MK (2009) Unsymmetrical extended π-conjugated zinc phthalocyanine for sensitization of nanocrystalline TiO2 films. J Chem Sci 121(1):75–82CrossRefGoogle Scholar
  48. 48.
    Bourass M, Benjelloun AT, Benzakour M, Mcharfi M, Hamidi M, Bouzzine SM, Bouachrine M (2016) DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells. Chem Cent J 10(1):67CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ku J, Lansac Y, Jang YH (2011) Time-dependent density functional theory study on benzothiadiazole-based low-band-gap fused-ring copolymers for organic solar cell applications. J Phys Chem C 115(43):21508–21516CrossRefGoogle Scholar
  50. 50.
    Zhou Y, Li C, Xie HJ, Li YQ, Duhm S, Tang JX (2015). Adv Mater Interfaces 2(7)Google Scholar
  51. 51.
    Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3(5):297–302CrossRefGoogle Scholar
  52. 52.
    Wang T, Pearson AJ, Dunbar AD, Staniec PA, Watters DC, Yi H, Ryan AJ, Jones RA, Iraqi A, Lidzey DG (2012) Correlating structure with function in thermally annealed PCDTBT:PC70BM photovoltaic blends. Adv Funct Mater 22(7):1399–1408CrossRefGoogle Scholar
  53. 53.
    Chen H-Y, Wu J-L, Chen C-T, Chen C-T (2012) Rare solventannealing effective benzo(1,2-b:4,5-b′)dithiophene-based low band-gap polymer for bulk heterojunction organic photovoltaics. Chem Commun 48(7):1012–1014CrossRefGoogle Scholar
  54. 54.
    Chen M-C, Kar S, Liaw D-J, Chen W-H, Huang Y-C, Tai Y (2012) Small organic additive to improve the charge separation in an inverted bulk heterojunction organic photovoltaic. Org Electron 13(11):2702–2708CrossRefGoogle Scholar
  55. 55.
    Fu Y, Cha H, Lee GY, Moon BJ, Park CE, Park T (2012) 3,6-Carbazole incorporated into poly[9,9-dioctylfluorene-alt-(bisthienyl)benzothiadiazole]s improving the power conversion efficiency. Macromolecules 45(7):3004–3009CrossRefGoogle Scholar
  56. 56.
    Xie H, Zhang K, Duan C, Liu S, Huang F, Cao Y (2012) New acceptor-pended conjugated polymers based on 3,6- and 2,7-carbazole for polymer solar cells. Polymer 53(25):5675–5683CrossRefGoogle Scholar
  57. 57.
    Zhang ZG, Zhang S, Min J, Cui C, Geng H, Shuai Z, Li Y (2012) Side chain engineering of polythiophene derivatives with a thienylene–vinylene conjugated side chain for application in polymer solar cells. Macromolecules 45(5):2312–2320CrossRefGoogle Scholar
  58. 58.
    Grisorio R, Allegretta G, Romanazzi G, Suranna GP, Mastrorilli P, Mazzeo M, Gigli G (2012) An insight into the potential of random poly(heteroarylene–vinylene)s as donor materials in bulk heterojunction solar cells. Macromolecules 45(16):6396–6404CrossRefGoogle Scholar
  59. 59.
    Zhou E, Cong J, Tajima K, Yang C, Hashimoto K (2012) Conjugated polymers based on 1,3-dithien-2-yl-thieno[3,4-c]pyrrole-4,6-dione: synthesis, characterization, and solvent effects on photovoltaic performance. J Phys Chem C 116(3):2608–2614CrossRefGoogle Scholar
  60. 60.
    Lee SK, Lee WH, Cho JM, Park SJ, Park JU, Shin WS, Moon SJ (2011) Synthesis and photovoltaic properties of quinoxaline-based alternating copolymers for high-efficiency bulk-heterojunction polymer solar cells. Macromolecules 44(15):5994–6001CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, School of Advanced SciencesVIT UniversityVelloreIndia
  2. 2.Department of PhysicsBannari Amman Institute of TechnologySathyamangalamIndia
  3. 3.Centre for Nanoscience and TechnologyAnna UniversityChennaiIndia
  4. 4.Department of PhysicsUniversity of the Free StateBloemfonteinSouth Africa
  5. 5.Department of Nano Science and TechnologyBharathiar UniversityCoimbatoreIndia

Personalised recommendations