Colloid and Polymer Science

, Volume 296, Issue 7, pp 1137–1144 | Cite as

Polyborane encapsulated liposomes prepared using pH gradient and reverse-phase evaporation for boron neutron capture therapy: biodistribution in tumor-bearing mice

  • Issei Takeuchi
  • Nobuhiro Kishi
  • Kazutaka Shiokawa
  • Hiromi Uchiro
  • Kimiko MakinoEmail author
Original Contribution


Various types of boron delivery for boron neutron capture therapy (BNCT) have been studied. To selectively destroy cancer cells, high accumulation and selective delivery of 10B into tumor tissue are required. In this study, we developed polyboranes from 1,2-dicarba-closo-dodecaborane as boron carriers, and they were encapsulated into liposomes using either the pH gradient or reverse phase evaporation. The encapsulation efficiency of the liposome prepared using the pH gradient was twice as high as that prepared using reverse-phase evaporation. These liposomes, with diameters of either 50 or 100 nm, were injected into the tail veins of tumor-bearing mice to evaluate their biodistribution at 4, 12, and 24 h post-administration. Boron concentration of the polyborane encapsulated liposomes prepared using the pH gradient achieved 110–150 μg/g of tumor tissue, and the liposomes prepared using the pH gradient were able to achieve an intratumoral 10B concentration of 20–30 μg/g without replacing 11B with 10B. Moreover, this liposome maintained a high 10B level in the tumor for at least 20 h. Average tumor/blood ratios of liposomes reached 5–15 at 4–24 h after injection. From these results, use of polyborane encapsulated liposomes prepared using the pH gradient for BNCT was suggested.


Boron neutron capture therapy pH gradient Liposomes Drug delivery Dicarba-closo-dodecaborane Biodistribution: tumor-bearing mice 


Funding information

This work was supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2010-2014 (Grant Number S1001019).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Barth RF, Coderrea JA, Vicente MGH (2005) Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 11:3987–4002. CrossRefPubMedGoogle Scholar
  2. 2.
    Maruyama K, Ishida O, Kasaoka S, Takizawa T, Utoguchi N, Shinohara A, Chiba M, Kobayashi H, Eriguchi M, Yanagie H (2004) Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J Control Release 98:195–207. CrossRefPubMedGoogle Scholar
  3. 3.
    Vicente MGH, Wickramasinghe A, Nurco DJ, Wang HJH, Nawrocky MM, Makar M, Miura M (2003) Synthesis, toxicity and biodistribution of two 5,15-di[3,5-(nidocarboranylmethyl)phenyl]porphyrins in EMT-6 tumor bearing mice. Bioorganic Med Chem 11:3101–3108. CrossRefGoogle Scholar
  4. 4.
    Thirumamagal BTS, Zhao XB, Bandyopadhyaya AK, Narayanasamy S, Johnsamuel J, Tiwari R, Golightly DW, Patel V, Jehning BT, Backer MV, Barth RF, Lee RJ, Backer JM, Tjarks W (2006) Receptor-targeted liposomal delivery of boron-containing cholesterol mimics for boron neutron capture therapy (BNCT). Bioconjug Chem 17:1141–1150. CrossRefPubMedGoogle Scholar
  5. 5.
    Yanagië H, Tomita T, Kobayashi H, Fujii Y, Nonaka Y, Saefusa Y, Hasumi K, Eriguchi M, Kobayashi T, Ono K (1997) Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy. Br J Cancer 75:660–665CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shelly K, Feakes DA, Hawthorne MF, Schmidt PG, Krisch TA, Bauer WF (1992) Model studies directed toward the boron neutron-capture therapy of cancer: boron delivery to murine tumors with liposomes. Proc Natl Acad Sci 89:9039–9043. CrossRefPubMedGoogle Scholar
  7. 7.
    Hawthorne MF, Shelly K (1997) Liposomes as drug delivery vehicles for boron agents. J Neuro-Oncology 33:53–58. CrossRefGoogle Scholar
  8. 8.
    Lee JD, Ueno M, Miyajima Y, Nakamura H (2007) Synthesis of boron cluster lipids: closo-dodecaborate as an alternative hydrophilic function of boronated liposomes for neutron capture therapy. Org Lett 9:323–326. CrossRefPubMedGoogle Scholar
  9. 9.
    Yang W, Barth RF, Rotaru JH, Moeschberger ML, Joel DD, Nawrocky MM, Goodman JH (1997) Enhanced survival of glioma bearing rats following boron neutron capture therapy with blood-brain barrier disruption and intracarotid injection of boronophenylalanine. J Neuro-Oncol 33:59–70. CrossRefGoogle Scholar
  10. 10.
    Shirakawa M, Yamamto T, Nakai K, Aburai K, Kawatobi S, Tsurubuchi T, Yamamoto Y, Yokoyama Y, Okuno H, Matsumura A (2009) Synthesis and evaluation of a novel liposome containing BPA–peptide conjugate for BNCT. Appl Radiat Isot 67:S88–S90. CrossRefPubMedGoogle Scholar
  11. 11.
    Li T, Hamdi J, Hawthorne MF (2006) Unilamellar liposomes with enhanced boron content. Bioconjug Chem 17:15–20. CrossRefPubMedGoogle Scholar
  12. 12.
    Nakamura H, Miyajima Y, Takei T, Kasaoka S, Maruyama K (2004) Synthesis and vesicle formation of a nido-carborane cluster lipid for boron neutron capture therapy. Chem Commun 1910–1991. doi:
  13. 13.
    Sudimack JJ, Adams D, Rotaru J, Shukla S, Yan J, Sekido M, Barth RF, Tjarks W, Lee RJ (2002) Folate receptor-mediated liposomal delivery of a lipophilic boron agent to tumor cells in vitro for neutron capture therapy. Pharm Res 19:1502–1508. CrossRefPubMedGoogle Scholar
  14. 14.
    Feakes DA, Shelly K, Hawthorne MF (1995) Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes. Proc Natl Acad Sci 92:1367–1370. CrossRefPubMedGoogle Scholar
  15. 15.
    Takeuchi I, Tomoda K, Matsumoto K, Uchiro H, Makino K (2016) PEGylated liposomes prepared with polyborane instead of cholesterol for BNCT: characteristics and biodistribution evaluation. Colloid Polym Sci 294:1679–1685. CrossRefGoogle Scholar
  16. 16.
    Valliant JF, Guenther KJ, King AS, Morel P, Schaffer P, Sogbein OO, Stephenson KA (2002) The medicinal chemistry of carboranes. Coord Chem Rev 232:173–230. CrossRefGoogle Scholar
  17. 17.
    Bregadze VI (1992) Dicarba-closo-dodecaboranes C2Bl0H12 and their derivatives. Chem Rev 92:209–223. CrossRefGoogle Scholar
  18. 18.
    Coult R, Fox MA, Gill WR, Herbertson PL, Macbride JAH, Wade K (1993) C-arylation and C-heteroarylation of icosahedral carboranes via their copper(I) derivatives. J Organomet Chem 462:19–29. CrossRefGoogle Scholar
  19. 19.
    Zheng Z, Jiang W, Zinn AA, Knobler CB, Hawthorne MF (1995) Facile electrophilic iodination of icosahedral carboranes. Synthesis of carborane derivatives with boron-carbon bonds via the palladium-catalyzed reaction of diiodocarboranes with grignard reagents. Inorg Chem 34:2095–2100. CrossRefGoogle Scholar
  20. 20.
    Endo Y, Iijima T, Yamakoshi Y, Fukasawa H, Miyaura C, Inada M, Kubo A, Itai A (2001) Receptor-targeted liposomal delivery of boron-containing cholesterol mimics for boron neutron capture therapy (BNCT). Chem Biol 8:341–355. CrossRefPubMedGoogle Scholar
  21. 21.
    Kakihana H, Kotaka M, Satoh S, Nomura M, Okamoto M (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Bull Chem Soc Jpn 50:158–163. CrossRefGoogle Scholar
  22. 22.
    Heber EM, Kueffer PJ, Lee MW Jr, Hawthorne MF, Garabalino MA, Molinari AJ, Nigg DW, Bauer W, Hughes AM, Pozzi ECC, Trivillin VA, Schwint AE (2012) Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential. Radiat Environ Biophys 51:195–204.
  23. 23.
    Takeuchi I, Ishizuka Y, Uchiro H, Makino K (2017) Detailed biodistribution of liposomes prepared with polyborane instead of cholesterol for BNCT: effects of PEGylation. Colloid Polym Sci, in press 295:1455–1461CrossRefGoogle Scholar
  24. 24.
    Nichols JW, Deamer DW (1976) Catecholamine uptake and concentration by liposomes maintaining pH gradients. Biochim Biophys Acta 455:269–271. CrossRefPubMedGoogle Scholar
  25. 25.
    Mayer LD, Bally MB, Cullis PR (1986) Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta 857:123–126. CrossRefPubMedGoogle Scholar
  26. 26.
    Harrigan PR, Wong KF, Redelmeier TE, Wheeler JJ, Cullis PR (1993) Accumulation of doxorubicin and other lipophilic amines into large unilamellar vesicles in response to transmembrane pH gradients. Biochim Biophys Acta 1149:329–338. CrossRefPubMedGoogle Scholar
  27. 27.
    Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Süss R (2006) Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta 1758:1633–1640. CrossRefPubMedGoogle Scholar
  28. 28.
    Szoka Jr F, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci 75:4194–4198CrossRefPubMedGoogle Scholar
  29. 29.
    Ueno M, Ban HS, Nakai K, Inomata R, Kaneda Y, Matsumura A, Nakamura H (2010) Dodecaborate lipid liposomes as new vehicles for boron delivery system of neutron capture therapy. Bioorg Med Chem 18:3059–3065. CrossRefPubMedGoogle Scholar
  30. 30.
    Pick U (1981) Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. Archiv Biochem Biophys 212:186–194. CrossRefGoogle Scholar
  31. 31.
    Thomae AV, Koch T, Panse C, Wunderli-Allenspach H, Krämer SD (2007) Comparing the lipid membrane affinity and permeation of drug-like acids: the intriguing effects of cholesterol and charged lipids. Pharm Res 24:1457–1472. CrossRefPubMedGoogle Scholar
  32. 32.
    Doi A, Kawabata S, Iida K, Yokoyama K, Kajimoto Y, Kuroiwa T, Shirakawa T, Kirihara M, Kasaoka S, Maruyama K, Kumada H, Sakurai Y, Masunaga SI, Ono K, Miyatake SI (2008) Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy. J Neuro-Oncol 87:287–294. CrossRefGoogle Scholar
  33. 33.
    Rodewald R, Karnovsky MJ (1974) Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol 60:423–433. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Issei Takeuchi
    • 1
    • 2
    • 3
  • Nobuhiro Kishi
    • 1
  • Kazutaka Shiokawa
    • 1
  • Hiromi Uchiro
    • 1
    • 2
    • 3
  • Kimiko Makino
    • 1
    • 2
    • 3
    Email author
  1. 1.Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
  2. 2.Center for Drug Delivery ResearchTokyo University of ScienceChibaJapan
  3. 3.Center for Physical PharmaceuticsTokyo University of ScienceChibaJapan

Personalised recommendations