Colloid and Polymer Science

, Volume 296, Issue 7, pp 1183–1191 | Cite as

Adsorption of lysozyme on pH-responsive PnBA-b-PAA polymeric nanoparticles: studies by stopped-flow SAXS and ITC

  • Sergey K. FilippovEmail author
  • Aristeidis Papagiannopoulos
  • Anna Riabtseva
  • Stergios Pispas
Original Contribution


The interactions of poly(n-butyl acrylate)-b-poly(acrylic acid) (PnBA-b-PAA) block copolymer nanoparticles with lysozyme were examined by a stopped-flow technique consisting of small-angle X-ray scattering (SAXS) and isothermal titration calorimetry (ITC). Nanoparticles composed of PnBA-b-PAA block copolymer had a spherical shape and core-shell structure, which was confirmed by cryo-transmission electron microscopy (cryo-TEM) and SAXS. ITC revealed that lysozyme binds to the nanoparticle surface and that the strength of the binding depends on the ionic strength of the solution and the composition of the PnBA-b-PAA copolymers. Thermodynamic results unambiguously indicated that the interaction of lysozyme with the nanoparticle surface is a two-step process and entropy driven. Stopped-flow experiments proved that lysozyme penetration into the PAA corona occurs on a time scale of hundreds of milliseconds. Based on the fitting of SAXS curves, the number of micelles per volume increases with time, the core size remains nearly constant, and the thickness of the shell decreases. Such findings justify the model proposed in our previous papers.


Polymeric nanoparticles Lysozyme Small-angle X-ray scattering Stopped-flow Cryo-TEM Isothermal titration calorimetry 



We thank EMBL and DESY for allocating beam time and providing excellent equipment. The authors acknowledge Lubomir Kovacik and Sami Kereiche for the cryo-TEM measurements.

Funding information

We acknowledge financial support from the Ministry of Education, Youth and Sports of the Czech Republic, grant no. LH15213.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4329_MOESM1_ESM.docx (111 kb)
ESM 1 (DOCX 111 kb)


  1. 1.
    Lynch I, Lundqvist M, Stigler J, Elia G, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105:14265–14270CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Saptarshi SR, Duschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 11:26CrossRefGoogle Scholar
  3. 3.
    Wiseman T, Williston S, Brandts JF, Lin L-N (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137CrossRefPubMedGoogle Scholar
  4. 4.
    O’Brien R, Ladbury JE, Chowdry BZ (2001) Isothermal titration calorimetry of biomolecules. In: Harding SE, Chowdry BZ (eds) Protein-ligand interactions: hydrodynamics and calorimetry. Oxford University Press, Oxford, pp 263–286Google Scholar
  5. 5.
    Leavitt S, Freire E (2001) Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol 11:560–566CrossRefPubMedGoogle Scholar
  6. 6.
    Roselin LS, Lin M-S, Lin P-H, Chang Y, Chen W-Y (2010) Recent trends and some applications of isothermal titration calorimetry in biotechnology. Biotechnol J 5:85–98CrossRefPubMedGoogle Scholar
  7. 7.
    Albarkah YA, Green RJ, Khutoryanskiy VV (2015) Probing the mucoadhesive interactions between porcine gastric mucin and some water-soluble polymers. Macromol Biosci 15:1546–1553CrossRefPubMedGoogle Scholar
  8. 8.
    Riabtseva A, Kaberov LI, Kučka J, Bogomolova A, Stepanek P, Filippov SK, Hruby M (2017) Polyelectrolyte pH-responsive protein-containing nanoparticles: the physicochemical supramolecular approach. Langmuir 33:764–772CrossRefPubMedGoogle Scholar
  9. 9.
    Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7:914–920CrossRefPubMedGoogle Scholar
  10. 10.
    Shubhra QTH, Tóth J, Gyenis J, Feczkó T (2014) Surface modification of HSA containing magnetic PLGA nanoparticles by poloxamer to decrease plasma protein adsorption. Coll Surf B: Biointerf 122:529–536CrossRefGoogle Scholar
  11. 11.
    Mertens HDT, Svergun DI (2010) Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol 172:128–141CrossRefPubMedGoogle Scholar
  12. 12.
    Semisotnov GV, Kihara H, Kotova NV, Kimura K, Amemiya Y, Wakabayashi K, Serdyuk IN, Timchenko AA, Chiba K, Nikaido K, Ikura T, Kuwajima K (1996) Protein globularization during folding. A study by synchrotron small-angle X-ray scattering. J Mol Biol 262:559–574CrossRefPubMedGoogle Scholar
  13. 13.
    Carl N, Prévost S, Fitzgerald JPS, Karg M (2017) Salt-induced cluster formation of gold nanoparticles followed by stopped-flow SAXS, DLS and extinction spectroscopy. Phys Chem Chem Phys 19:16348–16357CrossRefPubMedGoogle Scholar
  14. 14.
    Fürst C, Zhang P, Roth SV, Drechsler M, Förster S (2016) Self-assembly of block copolymers via micellar intermediate states into vesicles on time scales from milliseconds to days. Polymer 107:434–444CrossRefGoogle Scholar
  15. 15.
    Henzler K, Rosenfeldt S, Wittemann A, Harnau L, Finet S, Narayanan T, Ballauff M (2008) Directed motion of proteins along tethered polyelectrolytes. Phys Rev Lett 100:158301e4CrossRefGoogle Scholar
  16. 16.
    Henzler K, Haupt B, Rosenfeldt S, Harnau L, Narayanan T, Ballauff M (2011) Interaction strength between proteins and polyelectrolyte brushes: a small angle X-ray scattering study. Phys Chem Chem Phys 13:17599–17605CrossRefPubMedGoogle Scholar
  17. 17.
    Wang W, Li L, Henzler K, Lu Y, Wang J, Han H, Tian Y, Wang Y, Zhou Z, Lotze G, Narayanan T, Ballauff M, Guo X (2017) Protein immobilization onto cationic spherical polyelectrolyte brushes studied by small angle X-ray scattering. Biomacromolecules 18:1574–1581CrossRefPubMedGoogle Scholar
  18. 18.
    Segel DJ, Bachmann A, Hofrichter J, Hodgson KO, Doniach S, Kiefhaber T (1999) Characterization of transient intermediates in lysozyme folding with time-resolved small-angle X-ray scattering. J Mol Biol 288:489–499CrossRefPubMedGoogle Scholar
  19. 19.
    Papagiannopoulos A, Meristoudi A, Hong K, Pispas S (2016) Kinetics of temperature response of PEO-b-PNIPAM-b-PAA triblock terpolymer aggregates and of their complexes with lysozyme. Polymer 83:111–115CrossRefGoogle Scholar
  20. 20.
    Papagiannopoulos A, Meristoudi A, Pispas S, Radulescu A (2016) Micelles from HOOC-PnBA-b-PAA-C12H15 diblock amphiphilic polyelectrolytes as protein nanocarriers. Biomacromolecules 17:3816–3827CrossRefPubMedGoogle Scholar
  21. 21.
    Papagiannopoulos A, Meristoudi A, Pispas S, Keiderling U (2016) Thermoresponsive behavior of micellar aggregates from end-functionalized PnBA-b-PNIPAM-COOH block copolymers and their complexes with lysozyme. Soft Matter 12:6547–6556CrossRefPubMedGoogle Scholar
  22. 22.
    Papagiannopoulos A, Zhao J, Zhang G, Pispas S, Radulescu A (2013) Thermoresponsive transition of a PEO-b-PNIPAM copolymer: from hierarchical aggregates to well defined ellipsoidal vesicles. Polymer 54:6373–6380CrossRefGoogle Scholar
  23. 23.
    Papagiannopoulos A, Zhao J, Zhang G, Pispas S, Radulescu A (2014) Thermoresponsive aggregation of PS–PNIPAM–PS triblock copolymer: a combined study of light scattering and small angle neutron scattering. Eur Polym J 56:59–68CrossRefGoogle Scholar
  24. 24.
    Blanchet CE, Spilotros A, Schwemmer F, Graewert MA, Kikhney A, Jeffries CM, Franke D, Mark D, Zengerle R, Cipriani F, Fiedler S, Roessle M, Svergun DI (2015) Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY). J Appl Crystallogr 48:431–443CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277–1282CrossRefGoogle Scholar
  26. 26.
    Jakes J (1988) Testing of the constrained regularization method of inverting Laplace transform on simulated very wide quasielastic light scattering autocorrelation functions. Czechoslov J Phys 38:1305–1316CrossRefGoogle Scholar
  27. 27.
    Stepanek P (1993) Data analysis in dynamic light scattering. In: Brown W (ed) Dynamic light scattering. The method and some applications. Clarendon Press, Oxford, pp 175–241Google Scholar
  28. 28.
    Klíčová L, Šebej P, Štacko P, Filippov S, Bogomolova A, Klán P (2012) CTAB/water/chloroform reverse micelles: a closed or open association model? Langmuir 28:15185–15192CrossRefPubMedGoogle Scholar
  29. 29.
    Angelov B, Angelova A, Filippov SK, Drechsler M, Štěpánek P, Lesieur S (2014) Multicompartment lipid cubic nanoparticles with high protein upload: millisecond dynamics of formation. ACS Nano 8:5216–5226CrossRefPubMedGoogle Scholar
  30. 30.
    Angelov B, Angelova A, Filippov SK, Narayanan T, Drechsler M, Nicolas V, Štěpánek P, Couvreur P, Lesieur S (2013) DNA/fusogenic lipid nanocarrier assembly: millisecond structural dynamics. J Phys Chem Let 4:1959–1964CrossRefGoogle Scholar
  31. 31.
    Filippov SK, Franklin JM, Konarev PV, Chytil P, Etrych T, Bogomolova A, Dyakonova M, Papadakis C, Radulescu A, Ulbrich K, Stepanek P, Svergun DI (2013) SAXS/SANS kinetic study of hydrolytically degradable polymer micelles intended for controlled drug delivery. Biomacromolecules 14:4061–4070CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sergey K. Filippov
    • 1
    Email author
  • Aristeidis Papagiannopoulos
    • 2
  • Anna Riabtseva
    • 1
  • Stergios Pispas
    • 2
  1. 1.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Theoretical and Physical Chemistry InstituteNational Hellenic Research FoundationAthensGreece

Personalised recommendations