Skip to main content
Log in

pH-responsive magnetic Pickering Janus emulsions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We report ultrasonically generated pH-responsive Pickering Janus emulsions of olive oil and silicone oil with controllable droplet size and engulfment. Chitosan was used as a pH-responsive emulsifier. The increase of pH from 2 to 6 leads to a transition from completely engulfed double emulsion droplets to dumbbell-shaped Janus droplets accompanied by a significant decrease of droplet diameter and a more homogeneous size distribution. The results can be elucidated by the conformational change of chitosan from a more extended form at pH 2 to a more flexible form at pH 4–5.

Magnetic responsiveness to the emulsion was attributed by dispersing superparamagnetic nanoparticles (Fe3O4 with diameter of 13 ± 2 nm) in the olive oil phase before preparing the Janus emulsion. Incorporation of magnetic nanoparticles leads to superior emulsion stability, drastically reduced droplet diameters, and opened the way to control movement and orientation of the Janus droplets according to an external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hasinovic H, Friberg SE, Rong G (2011) A one-step process to a Janus emulsion. J Colloid Interface Sci 354:424–426. https://doi.org/10.1016/j.jcis.2010.10.004

    Article  CAS  Google Scholar 

  2. Zhang Q, Savagatrup S, Kaplonek P, Seeberger PH, Swager TM (2017) Janus emulsions for the detection of bacteria. ACS Cent Sci 3:309–313. https://doi.org/10.1021/acscentsci.7b00021

    Article  CAS  Google Scholar 

  3. Kovach I, Rumschöttel J, Friberg SE, Koetz J (2016) Janus emulsion mediated porous scaffold bio-fabrication. Colloids Surf B Biointerfaces 145:347–352. https://doi.org/10.1016/j.colsurfb.2016.05.018

    Article  CAS  Google Scholar 

  4. Nagelberg S, Zarzar LD, Nicolas N, Subramanian K, Kalow JA, Sresht V, Blankschtein D, Barbastathis G, Kreysing M, Swager TM, Kolle M (2017) Reconfigurable and responsive droplet-based compound micro-lenses. Nat Commun 8:14673. https://doi.org/10.1038/ncomms14673

    Article  Google Scholar 

  5. Ge L, Lu S, Han J, Guo R (2015) Anisotropic particles templated by Janus emulsion. Chem Commun 51:7432–7434. https://doi.org/10.1039/C5CC00935A

    Article  CAS  Google Scholar 

  6. Wei D, Ge L, Lu S, Li J, Guo R (2017) Janus particles templated by Janus emulsions and application as a Pickering emulsifier. Langmuir 33:5819–5828. https://doi.org/10.1021/acs.langmuir.7b00939

    Article  CAS  Google Scholar 

  7. Kano M, Yanagisawa N, Takahashi Y, Kondo Y (2017) Fabrication of hollow polymer particles using emulsions of hydrocarbon oil/fluorocarbon oil/aqueous surfactant solution. J Fluor Chem 197:34–41. https://doi.org/10.1016/j.jfluchem.2017.02.008

    Article  CAS  Google Scholar 

  8. Guzowski J, Korczyk PM, Jakiela S, Garstecki P (2012) The structure and stability of multiple micro-droplets. Soft Matter 8:7269. https://doi.org/10.1039/c2sm25838b

    Article  CAS  Google Scholar 

  9. Kovach I, Friberg SE, Koetz J (2017) A “perfect Janus emulsion”: thermodynamic factors. J Dispers Sci Technol 38:594–597. https://doi.org/10.1080/01932691.2016.1183502

    Article  CAS  Google Scholar 

  10. Friberg SE, Kovach I, Koetz J (2013) Equilibrium topology and partial inversion of Janus drops: a numerical analysis. ChemPhysChem 14:3772–3776. https://doi.org/10.1002/cphc.201300635

    Article  CAS  Google Scholar 

  11. Zarzar LD, Sresht V, Sletten EM, Kalow JA, Blankschtein D, Swager TM (2015) Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature 518:520–524. https://doi.org/10.1038/nature14168

    Article  CAS  Google Scholar 

  12. Kovach I, Koetz J, Friberg SE (2014) Janus emulsions stabilized by phospholipids. Colloids Surf A Physiochem Eng Asp 441:66–71. https://doi.org/10.1016/j.colsurfa.2013.08.065

    Article  CAS  Google Scholar 

  13. Raju RR, Kosmella S, Friberg SE, Koetz J (2017) Pickering Janus emulsions and polyelectrolyte complex-stabilized Janus gels. Colloids Surf A Physicochem Eng Asp 533:241–248. https://doi.org/10.1016/j.colsurfa.2017.08.022

    Article  CAS  Google Scholar 

  14. Alison L, Rühs PA, Tervoort E, Teleki A, Zanini M, Isa L, Studart AR (2016) Pickering and network stabilization of biocompatible emulsions using chitosan-modified silica nanoparticles. Langmuir 32:13446–13457. https://doi.org/10.1021/acs.langmuir.6b03439

    Article  CAS  Google Scholar 

  15. Tang J, Quinlan PJ, Tam KC (2015) Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter 11:3512–3529. https://doi.org/10.1039/C5SM00247H

    Article  CAS  Google Scholar 

  16. Wu J, Ma G-H (2016) Recent studies of Pickering emulsions: particles make the difference. Small 12:4633–4648. https://doi.org/10.1002/smll.201600877

    Article  CAS  Google Scholar 

  17. Montagne F, Mondain-Monval O, Pichot C, Mozzanega H, Elaı̈ssari A (2002) Preparation and characterization of narrow sized (o/w) magnetic emulsion. J Magn Magn Mater 250:302–312. https://doi.org/10.1016/S0304-8853(02)00412-2

    Article  CAS  Google Scholar 

  18. Kaiser A, Liu T, Richtering W, Schmidt AM (2009) Magnetic capsules and Pickering emulsions stabilized by core—shell particles. Langmuir 25:7335–7341. https://doi.org/10.1021/la900401f

    Article  CAS  Google Scholar 

  19. Zhou J, Qiao X, Binks BP, Sun K, Bai M, Li Y, Liu Y (2011) Magnetic Pickering emulsions stabilized by Fe 3 O 4 nanoparticles. Langmuir 27:3308–3316. https://doi.org/10.1021/la1036844

    Article  CAS  Google Scholar 

  20. Hamman JH (2010) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 8:1305–1322

    Article  CAS  Google Scholar 

  21. Payet L, Terentjev EM (2008) Emulsification and stabilization mechanisms of O/W emulsions in the presence of chitosan. Langmuir 24:12247–12252. https://doi.org/10.1021/la8019217

    Article  CAS  Google Scholar 

  22. Liu H, Wang C, Zou S, Wei Z, Tong Z (2012) Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification. Langmuir 28:11017–11024. https://doi.org/10.1021/la3021113

    Article  CAS  Google Scholar 

  23. Wang XY, Heuzey MC (2016) Chitosan-based conventional and Pickering emulsions with long-term stability. Langmuir 32:929–936. https://doi.org/10.1021/acs.langmuir.5b03556

    Article  CAS  Google Scholar 

  24. Liu X, Ma Z, Xing J, Liu H (2004) Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J Magn Magn Mater 270:1–6. https://doi.org/10.1016/j.jmmm.2003.07.006

    Article  CAS  Google Scholar 

  25. Cao H, He J, Deng L, Gao X (2009) Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method. Appl Surf Sci 255:7974–7980. https://doi.org/10.1016/j.apsusc.2009.04.199

    Article  CAS  Google Scholar 

  26. Hasinovic H, Boggs C, Friberg SE, Kovach I, Koetz J (2014) Janus emulsions from a one-step process; optical microscopy images. J Dispers Sci Technol 35:613–618. https://doi.org/10.1080/01932691.2013.801019

    Article  CAS  Google Scholar 

  27. Raymond L, Morin FG, Marchessault RH (1993) Degree of deacetylation of chitosan using conductometric titration and solid-state NMR. Carbohydr Res 246:331–336. https://doi.org/10.1016/0008-6215(93)84044-7

    Article  CAS  Google Scholar 

  28. Jiang X, Chen L, Zhong W (2003) A new linear potentiometric titration method for the determination of deacetylation degree of chitosan. Carbohydr Polym 54:457–463. https://doi.org/10.1016/j.carbpol.2003.05.004

    Article  CAS  Google Scholar 

  29. Tsaih ML, Chen RH (1999) Effects of ionic strength and pH on the diffusion coefficients and conformation of chitosans. J App Polym Sci 73:2041–2050. https://doi.org/10.1002/(SICI)1097-4628(19990906)73:10<2041::AID-APP22>3.0.CO;2-T

    Article  CAS  Google Scholar 

  30. Frison R, Cernuto G, Cervellino A et al (2013) Magnetite-maghemite nanoparticles in the 5-15 nm range: correlating the core-shell composition and the surface structure to magnetic properties. A total scattering study. Chem Mater 25:4820–4827. https://doi.org/10.1021/cm403360f

    Article  CAS  Google Scholar 

  31. Kim I, Worthen AJ, Johnston KP, DiCarlo DA, Huh C (2016) Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams. J Nanopart Res 18:82. https://doi.org/10.1007/s11051-016-3395-0

    Article  Google Scholar 

  32. Binks BP, Lumsdon SO (2001) Pickering emulsions stabilized by monodisperse latex particles: effects of particle size. Langmuir 17:4540–4547. https://doi.org/10.1021/la0103822

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge effective discussions and cordial help from Sibylle Rüstig and Dr. Brigitte Tiersch regarding Cryo-SEM and TEM micrographs.

Funding

This study was funded by the Polymer Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Koetz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Electronic supplementary material

ESM 2

(DOCX 9730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, R.R., Liebig, F., Klemke, B. et al. pH-responsive magnetic Pickering Janus emulsions. Colloid Polym Sci 296, 1039–1046 (2018). https://doi.org/10.1007/s00396-018-4321-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4321-z

Keywords

Navigation