Electrorheological response of microporous covalent triazine-based polymeric particles

Original Contribution


Microporous covalent triazine-based polymer (MCTP) particles were synthesized via a Friedel–Crafts reaction catalyzed by AlCl3, and their morphology and textural properties were confirmed by scanning electron microscopy and N2 adsorption isotherms, respectively. Electrorheological (ER) behavior of the MCTP particle-based ER fluid dispersed in silicone oil at a volume fraction of 5% was examined using a rotational rheometer to examine its viscoelastic properties such as shear stress, shear viscosity, yield stress, and dynamic moduli. Typical ER characteristics showed an increase with increased applied electric field strength following a polarization mechanism with the slope of 2 of the electric field-dependent yield stress, highlighting MCTP as a potential ER material. The dielectric spectra were also correlated with its ER effects using an LCR meter.


Microporous Triazine Polymer Electrorheological 



This work was supported by both Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant number: NRF-2015R1A4A1042434: W.S. Ahn) and National Research Foundation, Korea (2016R1A2B4008438: H.J. Choi).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Parmar KPS, Méheust Y, Schjelderupsen B, Fossum JO (2008) Electrorheological suspensions of Laponite in oil: rheometry studies. Langmuir 24(5):1814–1822.  https://doi.org/10.1021/la702989u CrossRefGoogle Scholar
  2. 2.
    Yin J, Xia X, Xiang L, Zhao X (2010) Conductivity and polarization of carbonaceous nanotubes derived from polyaniline nanotubes and their electrorheology when dispersed in silicone oil. Carbon 48(10):2958–2967.  https://doi.org/10.1016/j.carbon.2010.04.035 CrossRefGoogle Scholar
  3. 3.
    Liu FH, Xu GJ, Wu JH, Cheng YC, Guo JJ, Cui P (2009) Preparation and electrorheological properties of a hydroxyl titanium oxalate suspension. Smart Mater Struct 18(12):125015CrossRefGoogle Scholar
  4. 4.
    Ma H, Wen W, Tam WY, Sheng P (2003) Dielectric electrorheological fluids: theory and experiment. Adv Phys 52(4):343–383.  https://doi.org/10.1080/0001873021000059987 CrossRefGoogle Scholar
  5. 5.
    Tao R, Sun JM (1991) Three-dimensional structure of induced electrorheological solid. Phys Rev Lett 67(3):398–401CrossRefGoogle Scholar
  6. 6.
    Zhang WL, Choi HJ, Leong YK (2014) Facile fabrication of graphene oxide-wrapped alumina particles and their electrorheological characteristics, vol 145.  https://doi.org/10.1016/j.matchemphys.2014.01.052
  7. 7.
    Kontopoulou M, Kaufman M, Docoslis A (2009) Electrorheological properties of PDMS/carbon black suspensions under shear flow. Rheol Acta 48(4):409–421.  https://doi.org/10.1007/s00397-008-0332-x CrossRefGoogle Scholar
  8. 8.
    Wang BX, Rozynek Z, Fossum JO, Knudsen KD, Yu Y (2012) Guided self-assembly of nanostructured titanium oxide. Nanotechnology 23(7):075706CrossRefGoogle Scholar
  9. 9.
    Shen CL, Liang TC (2013) Design and implementation of a high-voltage generator with output voltage control for vehicle er shock-absorber applications, vol 2013.  https://doi.org/10.1155/2013/324590
  10. 10.
    Zhang M, Wang L, Wang X, Wu J, Li J, Gong X, Qin J, Li W, Wen W (2011) Microdroplet-based universal logic gates by electrorheological fluid. Soft Matter 7(16):7493–7497.  https://doi.org/10.1039/C1SM05687E CrossRefGoogle Scholar
  11. 11.
    Otsubo Y, Sekine M, Katayama S (1991) Effect of surface modification of colloidal silica on the electrorheology of suspensions. J Colloid Interface Sci 146(2):395–404.  https://doi.org/10.1016/0021-9797(91)90204-L CrossRefGoogle Scholar
  12. 12.
    Yin J, Zhao X (2011) Electrorheology of nanofiber suspensions. Nanoscale Res Lett 6(1):256.  https://doi.org/10.1186/1556-276X-6-256 CrossRefGoogle Scholar
  13. 13.
    Liu Y, Yuan J, Dong YZ, Zhao XP, Yin JB (2017) Enhanced temperature effect of electrorheological fluid based on cross-linked poly(ionic liquid) particles: rheological and dielectric relaxation studies. Soft Matter 13:1027–1039.  https://doi.org/10.1039/c6sm02480g CrossRefGoogle Scholar
  14. 14.
    Dong YZ, Yin JB, Zhao XP (2014) Microwave-synthesized poly(ionic liquid) particles: a new material with high electrorheological activity. J Mater Chem A 2:9812–9819.  https://doi.org/10.1039/c4ta00828f CrossRefGoogle Scholar
  15. 15.
    Dong YZ, Yin JB, Yuan JH, Zhao XP (2016) Microwave-assisted synthesis and high-performance anhydrous electrorheological characteristic of monodisperse poly(ionic liquid) particles with different size of cation/anion parts. Polymer 97:408–417CrossRefGoogle Scholar
  16. 16.
    Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV, Mulchandani A (2005) Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. J Am Chem Soc 127(2):496–497.  https://doi.org/10.1021/ja044486l CrossRefGoogle Scholar
  17. 17.
    Plachy T, Sedlacik P, Pavlinek V, Stejskal J, Graca MP, Costa LC (2016) Temperature-dependent electrorheological effect and its description with respect to dielectric spectra. J Intell Mater Syst Struct 27(7):880–886.  https://doi.org/10.1177/1045389X15600801 CrossRefGoogle Scholar
  18. 18.
    Plachy T, Sedlacik M, Pavlinek V, Stejskal J (2015) The observation of a conductivity threshold on the electrorheological effect of p-phenylenediamine oxidized with p-benzoquinone. J Mater Chem C 3:9973–9980.  https://doi.org/10.1039/c5tc02119g CrossRefGoogle Scholar
  19. 19.
    Thummarungsan N, Pattavarakorn D, Sirivat A (2016) Softened and flexible biodegradable poly(lactic acid) and its electromechanical properties for actuator application. J Mech Behav Biomed Mater 64(Supplement C):31–42.  https://doi.org/10.1016/j.jmbbm.2016.07.024 CrossRefGoogle Scholar
  20. 20.
    Chotpattananont D, Sirivat A, Jamieson AM (2006) Creep and recovery behaviors of a polythiophene-based electrorheological fluid. Polymer 47(10):3568–3575.  https://doi.org/10.1016/j.polymer.2006.03.061 CrossRefGoogle Scholar
  21. 21.
    Liu Z, Tian F, Lin Y, Wen X, Zhang P (2008) Electrorheological properties of poly(linear trans-quinacridone)-based suspensions. Colloids Surf A Physicochem Eng Asp 312(1):79–82.  https://doi.org/10.1016/j.colsurfa.2007.06.022 CrossRefGoogle Scholar
  22. 22.
    Cheng QL, Pavlinek V, He Y, Yan YF, Li CZ, Saha P (2011) Template-free synthesis of hollow poly( o -anisidine) microspheres and their electrorheological characteristics. Smart Mater Struct 20(6):065014CrossRefGoogle Scholar
  23. 23.
    Liu J, Wen X, Liu Z, Tan Y, Yang S, Zhang P (2015) Electrorheological performances of poly(o-toluidine) and p-toluenesulfonic acid doped poly(o-toluidine) suspensions. Colloid Polym Sci 293(5):1391–1400.  https://doi.org/10.1007/s00396-015-3523-x CrossRefGoogle Scholar
  24. 24.
    Sedlacik M, Pavlinek V, Mrlik M, Morávková Z, Hajná M, Trchová M, Stejskal J (2013) Electrorheology of polyaniline, carbonized polyaniline, and their core–shell composites. Mater Lett 101(Supplement C):90–92.  https://doi.org/10.1016/j.matlet.2013.03.084 CrossRefGoogle Scholar
  25. 25.
    Yin J, Zhao X, Xia X, Xiang L, Qiao Y (2008) Electrorheological fluids based on nano-fibrous polyaniline. Polymer 49(20):4413–4419.  https://doi.org/10.1016/j.polymer.2008.08.009 CrossRefGoogle Scholar
  26. 26.
    Wang BX, Tian XL, He K, Ma LL, Yu SS, Hao CC, Chen KZ, Lei QQ (2016) Hollow PAQR nanostructure and its smart electrorheological activity. Polymer 83:129–137CrossRefGoogle Scholar
  27. 27.
    Choi HJ, Cho MS, Jhon MS (1997) Electrorheological properties of poly(acene quinone) radical suspensions. Polym Adv Technol 8:697–700CrossRefGoogle Scholar
  28. 28.
    Yuan S, Dorney B, White D, Kirklin S, Zapol P, Yu L, Liu D-J (2010) Microporous polyphenylenes with tunable pore size for hydrogen storage. Chem Commun 46(25):4547–4549.  https://doi.org/10.1039/C0CC00235F CrossRefGoogle Scholar
  29. 29.
    Xiang Z, Cao D, Wang W, Yang W, Han B, Lu J (2012) Postsynthetic lithium modification of covalent-organic polymers for enhancing hydrogen and carbon dioxide storage. J Phys Chem C 116(9):5974–5980.  https://doi.org/10.1021/jp300137e CrossRefGoogle Scholar
  30. 30.
    Kaur P, Hupp JT, Nguyen ST (2011) Porous organic polymers in catalysis: opportunities and challenges. ACS Catal 1(7):819–835.  https://doi.org/10.1021/cs200131g CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Zhao L, Patra PK, Ying JY (2008) Synthesis and catalytic applications of mesoporous polymer colloids in olefin hydrosilylation. Adv Synth Catal 350(5):662–666.  https://doi.org/10.1002/adsc.200700619 CrossRefGoogle Scholar
  32. 32.
    Puthiaraj P, Cho S-M, Lee Y-R, Ahn W-S (2015) Microporous covalent triazine polymers: efficient Friedel-Crafts synthesis and adsorption/storage of CO2 and CH4. J Mater Chem A 3(13):6792–6797.  https://doi.org/10.1039/C5TA00665A CrossRefGoogle Scholar
  33. 33.
    Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47:3450–3453.  https://doi.org/10.1002/anie.200705710 CrossRefGoogle Scholar
  34. 34.
    Ren S, Bojdys MJ, Dawson R, Layvourn A, Khimyak YZ, Adams DJ, Cooper AI (2012) Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 24(17):2357–2361.  https://doi.org/10.1002/adma.201200751 CrossRefGoogle Scholar
  35. 35.
    Cho MS, Choi HJ, Jhon MS (2005) Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 46(25):11484–11488.  https://doi.org/10.1016/j.polymer.2005.10.029 CrossRefGoogle Scholar
  36. 36.
    Yin J, Wang X, Chang R, Zhao X (2012) Polyaniline decorated graphene sheet suspension with enhanced electrorheology. Soft Matter 8(2):294–297.  https://doi.org/10.1039/C1SM06728A CrossRefGoogle Scholar
  37. 37.
    Marshall L, Zukoski CF, Goodwin JW (1989) Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 85(9):2785–2795.  https://doi.org/10.1039/F19898502785 Google Scholar
  38. 38.
    Min TH, Choi HJ (2017) Synthesis of poly(methyl methacrylate)/graphene oxide nanocomposite particles via pickering emulsion polymerization and their viscous response under an electric field. Macromol Res 25(6):565–571.  https://doi.org/10.1007/s13233-017-5109-6 CrossRefGoogle Scholar
  39. 39.
    Hwang J-K, Shin K, Lim H-S, Cho J-C, Kim J-W, Suh K-D (2012) The effects of particle conductivity on the electrorheological properties of functionalized MCNT-coated doublet-shaped anisotropic microspheres. Macromol Res 20(4):391–396.  https://doi.org/10.1007/s13233-012-0035-0 CrossRefGoogle Scholar
  40. 40.
    Çabuk M (2017) Electrorheological response of mesoporous expanded perlite particles, vol 247.  https://doi.org/10.1016/j.micromeso.2017.03.044
  41. 41.
    Piao SH, Gao CY, Choi HJ (2017) Sulfonated polystyrene nanoparticles coated with conducting polyaniline and their electro-responsive suspension characteristics under electric fields. Polymer 127:174–181CrossRefGoogle Scholar
  42. 42.
    Lim ST, Lee CH, Choi HJ, Jhon MS (2003) Solidlike transition of melt-intercalated biodegradable polymer/clay nanocomposites. J Polym Sci B Polym Phys 41(17):2052–2061.  https://doi.org/10.1002/polb.10570 CrossRefGoogle Scholar
  43. 43.
    Schwarzl FR (1975) Numerical calculation of stress relaxation modulus from dynamic data for linear viscoelastic materials. Rheol Acta 14(7):581–590.  https://doi.org/10.1007/BF01520809 CrossRefGoogle Scholar
  44. 44.
    Erol O, Unal HI (2015) Core/shell-structured, covalently bonded TiO2/poly(3,4-ethylenedioxythiophene) dispersions and their electrorheological response: the effect of anisotropy. RSC Adv 5(125):103159–103171.  https://doi.org/10.1039/C5RA20284A CrossRefGoogle Scholar
  45. 45.
    Kim MW, Moon IJ, Choi HJ, Seo Y (2016) Facile fabrication of core/shell structured SiO2/polypyrrole nanoparticles with surface modification and their electrorheology. RSC Adv 6(61):56495–56502.  https://doi.org/10.1039/C6RA10349A CrossRefGoogle Scholar
  46. 46.
    Chae HS, Zhang WL, Piao SH, Choi HJ (2015) Synthesized palygorskite/polyaniline nanocomposite particles by oxidative polymerization and their electrorheology. Appl Clay Sci 107(Supplement C):165–172.  https://doi.org/10.1016/j.clay.2015.01.018 CrossRefGoogle Scholar
  47. 47.
    Wang Z, Gong X, Yang F, Jiang W, Xuan S (2014) Dielectric relaxation effect on flow behavior of electrorheological fluids. J Intell Mater Syst Struct 26(10):1141–1149.  https://doi.org/10.1177/1045389X14536007 CrossRefGoogle Scholar
  48. 48.
    Lee JH, Cho MS, Choi HJ, Jhon MS (1999) Effect of polymerization temperature on polyaniline based electrorheological suspensions. Colloid Polym Sci 277(1):73–76.  https://doi.org/10.1007/s003960050369 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Polymer Science and EngineeringInha UniversityIncheonSouth Korea
  2. 2.Department of Chemical EngineeringInha UniversityIncheonSouth Korea

Personalised recommendations