Advertisement

Colloid and Polymer Science

, Volume 296, Issue 5, pp 895–906 | Cite as

Thermal reversible rheology behaviors of biscarbamates-containing uncured epoxy composite pastes

  • Ming Zhang
  • Mingqing Chen
  • Zhongbin Ni
Original Contribution
  • 49 Downloads

Abstract

We investigated the rheology behaviors of diglycidyl ether of bisphenol-A (epoxy resin) composite pastes with various biscarbamates and compared them with those of epoxy composites with fumed SiO2. Thermal and rheological measurements showed thermal reversible rheology behaviors of shear thinning for all epoxy composites with various biscarbamates. Some biscarbamates endowed their epoxy composites’ stronger shear thinning behaviors than fumed silica did even at the low concentrations. Polarized microscopic, FT-IR, and DSC analyses demonstrated that excellent rheological responses of biscarbamates in epoxy composite pastes could be attributed to their various crystallization self-assemblies formed in epoxy matrix by the intermolecular interactions mainly including hydrogen bonding and van der Waals interactions, and these interactions were closely related to the molecular structures of biscarbamates.

Keywords

Biscarbamates Rheology Thermal reversible Self-assembly Epoxy composites 

Notes

Acknowledgments

The authors thank Mr. Ye Ming and Mr. Ma Wenguang for their collaboration in polarized optical microscopy imaging.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Oh TK, Hassan M, Beatty C, El-Shall H (2006) The effect of shear forces on the microstructure and mechanical properties of epoxy-clay nanocomposites. J. Appl.Polym. Sci 100:3465–3470CrossRefGoogle Scholar
  2. 2.
    Shirono H, Amano Y, Kawaguchi M, Kato TJ (2001) Characteristics of alkyltrimethoxysilane-treated fumed silicas and rheological behavior of fumed silica suspensions in an epoxy resin. Col. Inter. Sci 239:555–562CrossRefGoogle Scholar
  3. 3.
    Zhang XZ, Li WH, Gong XL (2010) Thixotropy of MR shear-thickening fluids. Smart Mater Struct 19:125012CrossRefGoogle Scholar
  4. 4.
    Iyer SS, Vedad-Ghavami R, Lee H, Liger M, Kavehpour HP, Candler RN (2013) Nonlinear damping for vibration isolation of microsystems using shear thickening fluid. Appl Phys Lett 102:251902CrossRefGoogle Scholar
  5. 5.
    Sims E, Villalobos M (2102) Controlling rheology in structural adhesives, adhesives & sealants industry, http://www.adhesivesmag.com (September 2012)
  6. 6.
    Zhang XZ, Li WH, Gong XL (2008) Study on magnetorheological shear thickening fluid. Smart Mater Struct 17:15051CrossRefGoogle Scholar
  7. 7.
    Kawaguchi M (2017) Dispersion stabilities and rheological properties of fumed silica suspensions. J Dispers Sci Technol 38:642–660CrossRefGoogle Scholar
  8. 8.
    Bergna HE(1994) In Colloid chemistry of silica, Amer. Chem. Soc.:Washington DC, pp 1–50Google Scholar
  9. 9.
    Genovese DB (2012) Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites. Adv Colloid Interf Sci 171-172:1–16CrossRefGoogle Scholar
  10. 10.
    Chang YH, Lin PY, Wu MS, Lin KF (2012) Extraordinary aspects of bromo-functionalized multi-walled carbon nanotubes as initiator for polymerization of ionic liquid monomers. Polymer 53:2008–2014CrossRefGoogle Scholar
  11. 11.
    Marunaka R, Kawaguchi M (2017) Rheological behavior of hydrophobic fumed silica suspensions in aromatic dispersion media. J Dispers Sci Technol 38(2):223–238CrossRefGoogle Scholar
  12. 12.
    Schilde C, Nolte H, Arlt C, Kwade A (2010) Effect of fluid–particle-interactions on dispersing nano-particles in epoxy resins using stirred-media-mills and three-roll-mills. Compos Sci Technol 70:657–663CrossRefGoogle Scholar
  13. 13.
    Kahraman TH, Gevgilili H, Kalyon DM, Pehlivan E (2013) Nanoclay dispersion into a thermosetting binder using sonication and intensive mixing methods. J Appl Polym Sci 129:1773–1783CrossRefGoogle Scholar
  14. 14.
    Ikeda M, Nobori T, Schmutz M, Lehn JM (2005) Hierarchical self-assembly of a bow-shaped molecule bearing self-complementary hydrogen bonding sites into extended supramolecular assemblies. Chem Eur J 11:662–668CrossRefGoogle Scholar
  15. 15.
    Archer EA, Gong H, Krische MJ (2001) Hydrogen bonding in noncovalent synthesis: selectivity and the directed organization of molecular strands. Tetrahedron 57:1139–1159CrossRefGoogle Scholar
  16. 16.
    Steichele, B. K. Patent 882,922,1980; Chem. Abstr 19080, 94, 66768dGoogle Scholar
  17. 17.
    Saka, K.; Noda, K.(1987) Jpn. Kokai Tokkyo Koho JP 62 179 584,1987; Chem Abstr ,108,39820rGoogle Scholar
  18. 18.
    Tanaka, K.; Kano, Y.; Yoshida, K. Jpn.Kokai Tokkyo Koho JP 63 248 894,1988; ChemAbstr 1988, 110, 79137wGoogle Scholar
  19. 19.
    Kinoshita, H.; Sekiya, M.; Mishima, M EurPatEP 274 756,1988; ChemAbstr 1988, 109, 233979kGoogle Scholar
  20. 20.
    Jpn. Kokai Tokyo Koho JP 58 201 758, 1983; Chem Abstr.1983, 100, 174289z.Google Scholar
  21. 21.
    Goodbrand, B.; Boils, D.; Sundararajan, P. R.;Wong, R.; Malhotra, S. 2001, US Patent 6 187 082Google Scholar
  22. 22.
    Terech P, Weiss RG (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev 97:3133–3159CrossRefGoogle Scholar
  23. 23.
    Kanakaiah V, Latha M, Sravan B, Palanisamy A, Vatsala Rani J (2014) Rechargeable magnesium carbon-fluoride battery with electrolyte gel of ionic liquid and low molecular weight gelator. J Electrochem Soc 161(A):1586–A1592CrossRefGoogle Scholar
  24. 24.
    Jung JH, Lee JH, Silverman JR (2013) Coordination polymer gels with important environmental and biological applications. Chem Soc Rev 42:924–936CrossRefGoogle Scholar
  25. 25.
    Segarra-Maset MD, Nebot VJ, Mirave JF, Escuder B (2013) Control of molecular gelation by chemical stimuli. Chem. Soc. Rev 42:7086–7098CrossRefGoogle Scholar
  26. 26.
    Goodbrand BBD Sundararajan, P.R. Wong, R. (2013) U.S. Patent, 6 414 051,Google Scholar
  27. 27.
    Khanna S, Moniruzzaman M, Sundararajan PR(2006) Influence of single versus double hydrogen-bonding motif on the crystallization and morphology of self-assembling carbamates with alkyl side chains: model system for polyurethanes. J. Phys. Chem. B:15251–15260Google Scholar
  28. 28.
    Moniruzzaman M, Sundararajan PR (2013) Role of hydrogen bonds in controlling the morphology of self-assembling carbamate systems. J. Phys. Chem. 109(B):1192–1197Google Scholar
  29. 29.
    Fure VL (2000) The IR spectra and hydrogen bonding of toluene-2,6-bis(methyl) and 4,4prime diphenylmethane-bis(methyl) carbamates. J. Mol. Struct. 520:117–123CrossRefGoogle Scholar
  30. 30.
    Coleman MM, Lee KH, Skrovanek DJ, Painter PC (1986) Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 19:2149–2157CrossRefGoogle Scholar
  31. 31.
    Mk K, Sundararajan PR (2013) Effects of spacer length and terminal group on the crystallization and morphology of biscarbamates: a longer spacer does not reduce the melting temperature. J Phys Chem 117(b):5705–5717Google Scholar
  32. 32.
    Ghasemi H, Carreau PJ, Kamal MR, Tabatabaei SH (2012) Properties of PET/clay nanocomposite films. Polym Eng Sci 52:420–430CrossRefGoogle Scholar
  33. 33.
    Kim YC, Kim JC (2007) Study on the silicate dispersion and rheological properties of PP/starch-MB/silicate composites. J Ind Eng Chem 13(6):1029–1034Google Scholar
  34. 34.
    Otsubo Y (1994) Relation between bridging conformation and rheology of suspensions. Adv Colloid Interf Sci 53:1–32CrossRefGoogle Scholar
  35. 35.
    Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  36. 36.
    Maisel JW, Wason SK (1982) Rheology of precipitated silica in epoxies. Polym Plast Technol Eng 19(2):227–242CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical and material engineeringJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations