Skip to main content
Log in

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid)–polymer composites as functional cathode binders for high power LiFePO4 batteries

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Electroactive conductive composites based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) and co-binding polymers—poly(ethylene oxide) (PEO) or sulfonated poly(phenylene oxide) (SPPO)—have been evaluated as conductive binders for LiFePO4 cathodes in Li-ion batteries. We have demonstrated that PEDOT:PSS–PEO and PEDOT:PSS–SPPO facilitated charge transfer for high rate application (discharge capacity up to 115 mAh g−1 at 3C). The thicker cathodes containing extra high loading of commercial LiFePO4/C (95 wt%, 19 mg cm−2) have exhibited specific capacity of up to 120 mAh g−1 and areal capacity of up to 2 mAh cm−2 at 1C, several times higher as compared to the earlier reported LiFePO4/PEDOT cathodes. While the application of PEO in PEDOT:PSS composites is restricted to sulfolane-based electrolytes due to solubility limitations, the PEDOT:PSS–SPPO-based cathodes can be used with conventional carbonate electrolytes, showing good stability and cyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zaghib K, Guerfi A, Hovington P, Vijh A, Trudeau M, Mauger A, Goodenough JB, Julien CM (2013) Review and analysis of nanostructured olivine-based lithium recheargeable batteries: status and trends. J Power Sources 232:357–369. https://doi.org/10.1016/j.jpowsour.2012.12.095

    Article  CAS  Google Scholar 

  2. Diouf B, Pode R (2015) Potential of lithium-ion batteries in renewable energy. Renew Energy 76:375–380. https://doi.org/10.1016/j.renene.2014.11.058

    Article  Google Scholar 

  3. Porcher W, Lestriez B, Jouanneau S, Guyomard D (2009) Design of aqueous processed thick LiFePO4 composite electrodes for high-energy lithium battery. J Electrochem Soc 156:A133–A144. https://doi.org/10.1149/1.3046129

    Article  CAS  Google Scholar 

  4. Levin OV, Eliseeva SN, Alekseeva EV, Tolstopjatova EG, Kondratiev VV (2015) Composite LiFePO4/poly-3,4-ethylenedioxythiophene cathode for lithium-ion batteries with low content of non-electroactive components. Int J Electrochem Sci 10:8175–8189

    CAS  Google Scholar 

  5. Arbizzani C, Beninati S, Mastragostino M (2010) A three-dimensional carbon-coated LiFePO4 electrode for high-power applications. J Appl Electrochem 40:7–11. https://doi.org/10.1007/s10800-009-9956-5

    Article  CAS  Google Scholar 

  6. Zheng H, Yang R, Liu G, Song X, Battaglia VS (2012) Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode. J Phys Chem C 116:4875–4882. https://doi.org/10.1021/jp208428w

    Article  CAS  Google Scholar 

  7. Yu DYW, Donoue K, Inoue T, Fujimoto M, Fujitani S (2006) Effect of electrode parameters on LiFePO4 cathodes. J Electrochem Soc 153:A835–A839. https://doi.org/10.1149/1.2179199

    Article  CAS  Google Scholar 

  8. Das PR, Komsiyska L, Osters O, Wittstock G (2015) PEDOT:PSS as a functional binder for cathodes in lithium ion batteries. J Electrochem Soc 162:A674–A678. https://doi.org/10.1149/2.0581504jes

    Article  CAS  Google Scholar 

  9. Eliseeva SN, Apraksin RV, Tolstopjatova EG, Kondratiev VV (2017) Electrochemical impedance spectroscopy characterization of LiFePO4 cathode material with carboxymethylcellulose and poly-3,4-ethylendioxythiophene/polystyrene sulfonate. Electrochim Acta 227:357–366. https://doi.org/10.1016/j.electacta.2016.12.157

    Article  CAS  Google Scholar 

  10. Vicente N, Haro M, Cíntora-Juárez D, Pérez-Vicente C, Tirado JL, Shahzada A, Garcia-Belmonte G (2015) LiFePO4 particle conductive composite strategies for improving cathode rate capability. Electrochim Acta 163:323–329. https://doi.org/10.1016/j.electacta.2015.02.148

    Article  CAS  Google Scholar 

  11. Cíntora-Juárez D, Pérez-Vicente C, Kazim S, Ahmad S, Tirado JL (2015) Judicious design of lithium iron phosphate electrodes using poly(3,4-ethylenedioxythiophene) for high performance batteries. J Mater Chem A 3:14254–14262. https://doi.org/10.1039/C5TA03542B

    Article  CAS  Google Scholar 

  12. Das PR, Komsiyska L, Osters O, Wittstock G (2015) Electrochemical stability of PEDOT:PSS as cathodic binder for Li-ion batteries. ECS Trans 68:45–58. https://doi.org/10.1149/06802.0045ecst

    Article  CAS  Google Scholar 

  13. Sun M, Zhong H, Jiao S, Shao H, Zhang L (2014) Investigation on carboxymethyl chitosan as new water soluble binder for LiFePO4 cathode in Li-ion batteries. Electrochim Acta 127:239–244. https://doi.org/10.1016/j.electacta.2014.02.027

    Article  CAS  Google Scholar 

  14. Li J, Armstrong BL, Kiggans J, Daniel C, Wood DL (2012) Lithium ion cell performance enhancement using aqueous LiFePO4 cathode dispersions and polyethyleneimine dispersant. J Electrochem Soc 160:A201–A206. https://doi.org/10.1149/2.037302jes

    Article  CAS  Google Scholar 

  15. Pan J, Xu G, Ding B, Chang Z, Wang A, Dou H, Zhang X (2016) PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries. RSC Adv 6:40650–40655. https://doi.org/10.1039/C6RA04230A

    Article  CAS  Google Scholar 

  16. Apraksin RV, Eliseeva SN, Tolstopjatova EG, Rumyantsev AM, Zhdanov VV, Kondratiev VV (2016) High-rate performance of LiFe0.4Mn0.6PO4 cathode materials with poly(3,4-ethylenedioxythiopene):poly(styrene sulfonate)/carboxymethylcellulose. Mater Lett 176:248–252. https://doi.org/10.1016/j.matlet.2016.04.106

    Article  CAS  Google Scholar 

  17. Eliseeva SN, Levin OV, Tolstopjatova EG, Alekseeva EV, Apraksin RV, Kondratiev VV (2015) New functional conducting poly-3,4-ethylenedioxythiopene:polystyrene sulfonate/carboxymethylcellulose binder for improvement of capacity of LiFePO4-based cathode materials. Mater Lett 161:117–119. https://doi.org/10.1016/j.matlet.2015.08.078

    Article  CAS  Google Scholar 

  18. Shao D, Zhong H, Zhang L (2014) Water-soluble conductive composite binder containing PEDOT:PSS as conduction promoting agent for Si anode of lithium-ion batteries. ChemElectroChem 1:1679–1687. https://doi.org/10.1002/celc.201402210

    Article  CAS  Google Scholar 

  19. Liu J, Davis NR, Liu DS, Hammond PT (2012) Highly transparent mixed electron and proton conducting polymer membranes. J Mater Chem 22:15534. https://doi.org/10.1039/c2jm32296j

    Article  CAS  Google Scholar 

  20. Wang CQ, Huang YH, Liao B, Zhao SL, Lin G, Cong GM (1996) Effects of the conductivity of sulfonated poly(phenylene oxide) lithium by the complexation of poly(ethylene oxide). Polym Adv Technol 7:697–700. https://doi.org/10.1002/(SICI)1099-1581(199608)7:8<697::AID-PAT568>3.0.CO;2-M

    Article  CAS  Google Scholar 

  21. Li P, Sun K, Ouyang J (2015) Stretchable and conductive polymer films prepared by solution blending. ACS Appl Mater Interfaces 7:18415–18423. https://doi.org/10.1021/acsami.5b04492

    Article  CAS  PubMed  Google Scholar 

  22. Barrales-Rienda JM, Pepper DC (1966) Intrinsic viscosities and dimensions of poly(phenylene oxide). J Polym Sci B Polym Lett 4:939–941. https://doi.org/10.1002/pol.1966.110041203

    Article  CAS  Google Scholar 

  23. Belharouak I, Johnson C, Amine K (2005) Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochem Commun 7:983–988. https://doi.org/10.1016/j.elecom.2005.06.019

    Article  CAS  Google Scholar 

  24. Huang RYM, Kim JJ (1984) Synthesis and transport properties of thin film composite membranes. I. Synthesis of poly(phenylene oxide) polymer and its sulfonation. J Appl Polym Sci 29:4017–4402. https://doi.org/10.1002/app.1984.070291234

    Article  CAS  Google Scholar 

  25. McDonald MB, Hammond PT (2018) Efficient transport networks in a dual electron/lithium-conducting polymeric composite for electrochemical applications. ACS Appl Mater Interfaces 10:15681–15690. https://doi.org/10.1021/acsami.8b01519

    Article  CAS  PubMed  Google Scholar 

  26. Alemu Mengistie D, Wang P-C, Chu C-W (2013) Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells. J Mater Chem A 1:9907–9915. https://doi.org/10.1039/c3ta11726j

    Article  CAS  Google Scholar 

  27. Wang T, Qi Y, Xu J, Hu X, Chen P (2005) Effects of poly(ethylene glycol) on electrical conductivity of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic acid) film. Appl Surf Sci 250:188–194. https://doi.org/10.1016/j.apsusc.2004.12.051

    Article  CAS  Google Scholar 

  28. Ouyang L, Musumeci C, Jafari MJ, Ederth T, Inganäs O (2015) Imaging the phase separation between PEDOT and polyelectrolytes during processing of highly conductive PEDOT:PSS films. ACS Appl Mater Interfaces 7:19764–19773. https://doi.org/10.1021/acsami.5b05439

    Article  CAS  PubMed  Google Scholar 

  29. Zaghib K (2008) Magnetic studies of phospho-olivine electrodes in relation with their electrochemical performance in Li-ion batteries. Solid State Ionics 179:16–23. https://doi.org/10.1016/j.ssi.2007.12.071

    Article  CAS  Google Scholar 

  30. Farah AA, Rutledge SA, Schaarschmidt A, Lai R, Freedman JP, Helmy AS (2012) Conductivity enhancement of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) films post-spincasting. J Appl Phys 112:113709. https://doi.org/10.1063/1.4768265

    Article  CAS  Google Scholar 

  31. Chong J, Xun S, Zheng H, Song X, Liu G, Ridgway P, Wang JQ, Battaglia VS (2011) A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells. J Power Sources 196:7707–7714. https://doi.org/10.1016/j.jpowsour.2011.04.043

    Article  CAS  Google Scholar 

  32. Lee S-Y, Ueno K, Angell CA (2012) Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: a Walden plot analysis of the maximally conductive compositions. The J Phys Chem C 116:23915–23920. https://doi.org/10.1021/jp3067519

    Article  CAS  Google Scholar 

  33. Zheng H, Li J, Song X, Liu G, Battaglia VS (2012) A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes. Electrochim Acta 71:258–265. https://doi.org/10.1016/j.electacta.2012.03.161

    Article  CAS  Google Scholar 

  34. Lee B-S, Wu Z, Petrova V, Xing X, Lim H-D, Liu H, Liu P (2018) Analysis of rate-limiting factors in thick electrodes for electric vehicle applications. J Electrochem Soc 165:A525–A533. https://doi.org/10.1149/2.0571803jes

    Article  CAS  Google Scholar 

  35. Cíntora-Juárez D, Pérez-Vicente C, Ahmad S, Tirado JL (2014) Improving the cycling performance of LiFePO4 cathode material by poly(3,4-ethylenedioxythiopene) coating. RSC Adv 4:26108–26114. https://doi.org/10.1039/C4RA05286B

    Article  Google Scholar 

  36. Trinh ND, Saulnier M, Lepage D, Schougaard SB (2013) Conductive polymer film supporting LiFePO4 as composite cathode for lithium ion batteries. J Power Sources 221:284–289. https://doi.org/10.1016/j.jpowsour.2012.08.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Andrey Chekannikov and Nataliya Gvozdik for Raman microscopic imaging. Research reported in this publication was done in collaboration with Center for Electrochemical Energy Storage of Skolkovo Institute of Science and Technology and Lomonosov Moscow State University Program of Development.

Funding information

The authors acknowledge financial support from the Russian Science Foundation (project N 17-73-30006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksei V. Kubarkov.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 226 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubarkov, A.V., Drozhzhin, O.A., Karpushkin, E.A. et al. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid)–polymer composites as functional cathode binders for high power LiFePO4 batteries. Colloid Polym Sci 297, 475–484 (2019). https://doi.org/10.1007/s00396-018-04468-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-04468-0

Keywords

Navigation