Advertisement

Colloid and Polymer Science

, Volume 296, Issue 3, pp 441–449 | Cite as

Coarse-grained simulations of polyelectrolyte brushes using a hybrid model

Original Contribution

Abstract

We investigate the structure of polyelectrolyte brushes to determine the effects of the charge fraction of the polymers, grafting density, chain length, and salt concentration. A hybrid coarse-grained model is employed, where a soft potential is applied to coarse-grained particles representing the solvent, while a hard potential is used for the polymer beads, and co- and counterions. A steep increase in brush height with charge fraction is observed in the low-to-moderate charge fraction regime, whereas the brush approaches the contour height in the high charge fraction regime. The effects of graft density and chain length on brush height are well explained by the scaling theory based on the balance between the osmotic pressure and chain elasticity, properly taking into account the polymer stiffness. In addition, Pincus’s power law for varying added salt concentration is also reproduced by the simulation.

Keywords

Polyelectrolytes Polymer brushes 

Notes

Funding Information

No specific funds/grants were received from any funding bodies to carry out the work described in this article.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Das S, Banik M, Chen G, Sinha S, Mukherjee R (2015) Soft Matter 11:8550CrossRefGoogle Scholar
  2. 2.
    Raviv U, Giasson S, Kampf N, Gohy J-F, Jérôme R, Klein J (2003) Nature 425:163CrossRefGoogle Scholar
  3. 3.
    Kreer T (2016) Soft Matter 12:3479CrossRefGoogle Scholar
  4. 4.
    Ahrens H, Foster S, Helm CA, Kumr NA, Naji A, Natz RR, Seidel C (2004) J Phys Chem B 108:16870CrossRefGoogle Scholar
  5. 5.
    Seki H, Suzuki YY, Orland H (2007) J Phys Soc Jpn 76:104601CrossRefGoogle Scholar
  6. 6.
    Taniguchi T (2009) J Phys Soc Jpn 78:041009CrossRefGoogle Scholar
  7. 7.
    Washizu H, Kinjo T, Yoshida H (2014) Friction 2:73CrossRefGoogle Scholar
  8. 8.
    Miklavic SJ, Marčelja S (1988) J Chem Phys 92:6718CrossRefGoogle Scholar
  9. 9.
    Ibergay C, Malfreyt P, Tildesley DJ (2010) J Phys Chem 114:7274CrossRefGoogle Scholar
  10. 10.
    Pincus P (1991) Macromolecules 24:2912CrossRefGoogle Scholar
  11. 11.
    Csajka FS, Seidel C (2000) Mocromolecules 33:2728CrossRefGoogle Scholar
  12. 12.
    Seidel C (2003) Mocromolecules 36:2536CrossRefGoogle Scholar
  13. 13.
    Naji A, Netz RR, Seidel C (2003) Eur Phys J E 12:223CrossRefGoogle Scholar
  14. 14.
    Kinjo T, Hyodo S (2007) Phys Rev E 75:051109CrossRefGoogle Scholar
  15. 15.
    Groot RD, Warren PB (1997) J Phys Chem 107:4423CrossRefGoogle Scholar
  16. 16.
    Klapp SHL, Diestler DJ, Schoen M (2004) J Phys Condens Matter 16:7331CrossRefGoogle Scholar
  17. 17.
    Kinjo T, Hyodo S (2007) Mol Sim 33:417CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Yeh I-C, Berkowitz ML (1999) J Chem Phys 111:3155CrossRefGoogle Scholar
  20. 20.
    Manning GS (1969) J Chem Phys 51:924CrossRefGoogle Scholar
  21. 21.
    Naji A, Seidel C, Netz RR (2006) Adv Polym Sci 198:149CrossRefGoogle Scholar
  22. 22.
    Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, OxfordGoogle Scholar
  23. 23.
    Storobl GR (2007) The physics of polymer. Springer, HeidelbergGoogle Scholar
  24. 24.
    Dan N, Tirrell M (1993) Macromolecules 26:4310CrossRefGoogle Scholar
  25. 25.
    Hariharan R, Viber C, Mays J, Russel WB (1998) Macromolecules 31:7506CrossRefGoogle Scholar
  26. 26.
    Kumar NA, Seidel C (2005) Macromolecules 38:9341CrossRefGoogle Scholar
  27. 27.
    Sing CE, Zwanikken JW, de la Cruz MO (2013) Macromolecules 46:5053CrossRefGoogle Scholar
  28. 28.
    Perry SL, Sing CE (2015) Macromolecules 48:5040CrossRefGoogle Scholar
  29. 29.
    Mima T, Yasuoka K (2008) Phys Rev E 77:011705CrossRefGoogle Scholar
  30. 30.
    Sharma S, Wookcock LV (1991) J Chem Soc Faraday Trans 87:2023CrossRefGoogle Scholar
  31. 31.
    Philippova OE, Sitnikova NL, Demidovich GB, Khokhlov AR (1996) Macromolecules 29Google Scholar
  32. 32.
    Khokhlov AR, Kramarenko EY (1996) Macromolecules 29:681CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tomoyuki Kinjo
    • 1
  • Hiroaki Yoshida
    • 1
  • Hitoshi Washizu
    • 1
    • 2
    • 3
  1. 1.Toyota Central R&D Labs., Inc.NagakuteJapan
  2. 2.Graduate School of Simulation StudiesUniversity of HyogoChuo-ku, KobeJapan
  3. 3.Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto UniversityKyotoJapan

Personalised recommendations